Exam 12: Limits and An Introduction To Calculus

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } . f(x)=x8f ( x ) = \sqrt { x - 8 }

(Multiple Choice)
4.8/5
(31)

Find the derivative of the function. f(x)=1x4f ( x ) = \frac { 1 } { \sqrt { x - 4 } }

(Multiple Choice)
4.8/5
(43)

Find limx5[g(x)f(x)]\lim _ { x \rightarrow 5 } [ g ( x ) - f ( x ) ] for f(x)=3x3 and g(x)=x2+66x2f ( x ) = 3 x ^ { 3 } \text { and } g ( x ) = \frac { \sqrt { x ^ { 2 } + 6 } } { 6 x ^ { 2 } } .

(Multiple Choice)
4.9/5
(33)

Use the graph to determine the limit visually (if it exists).Then identify another function h2(x)that agrees with the given function at all but one point. h(x)=x23xxh ( x ) = \frac { x ^ { 2 } - 3 x } { x }  Use the graph to determine the limit visually (if it exists).Then identify another function h<sub>2</sub>(x)that agrees with the given function at all but one point.    h ( x ) = \frac { x ^ { 2 } - 3 x } { x }         \lim _ { h } h ( x ) = \text { ? }    limhh(x)= ? \lim _ { h } h ( x ) = \text { ? }

(Multiple Choice)
4.8/5
(30)

Find a formula for the slope of the graph of f(x)=9x6f ( x ) = 9 x ^ { 6 } .

(Multiple Choice)
4.9/5
(42)

Find limx+[x(2+x)22]\lim _ { x \rightarrow + \infty } \left[ \frac { x } { ( 2 + x ) ^ { 2 } } - 2 \right] (if it exists).

(Multiple Choice)
4.8/5
(40)

Find a formula for the slope of the graph of ff at the point (x,f(x))( x , f ( x ) ) .Then use it to find the slope at the given point. f(x)=x1,(17,4)f ( x ) = \sqrt { x - 1 } , \quad ( 17,4 )

(Multiple Choice)
4.8/5
(37)

Find the limit (if it exists).Use a graphing utility to verify your result graphically. limx01x+313x\lim _ { x \rightarrow 0 } \frac { \frac { 1 } { x + 3 } - \frac { 1 } { 3 } } { x }

(Multiple Choice)
4.8/5
(30)

Find the limit (if it exists).Use a graphing utility to verify your result graphically. limx55xx225\lim _ { x \rightarrow 5 } \frac { 5 - x } { x ^ { 2 } - 25 }

(Multiple Choice)
4.8/5
(30)

Find limx83xx+5\lim _ { x \rightarrow 8 } \frac { 3 x } { \sqrt { x + 5 } } by direct substitution.

(Multiple Choice)
4.8/5
(30)

Find the limit of the sequence (if it exists). αn=4n2+12n\alpha _ { n } = \frac { 4 n ^ { 2 } + 1 } { 2 n }

(Multiple Choice)
4.9/5
(32)

Use the derivative of f(x)=2x3+3x2f ( x ) = 2 x ^ { 3 } + 3 x ^ { 2 } to determine any points on the graph of f(x)f ( x ) at which the tangent line is horizontal.

(Multiple Choice)
4.8/5
(33)

Find limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } for f(x)=36xf ( x ) = 3 - 6 x .

(Multiple Choice)
4.7/5
(37)

Find limx7x+3x5\lim _ { x \rightarrow 7 } \frac { \sqrt { x + 3 } } { x - 5 } by direct substitution.

(Multiple Choice)
4.8/5
(32)

Find the derivative of the function. g(x)=915xg ( x ) = 9 - \frac { 1 } { 5 } x

(Multiple Choice)
4.8/5
(42)

Find the derivative of the function. f(x)=x23x+4f ( x ) = x ^ { 2 } - 3 x + 4

(Multiple Choice)
4.8/5
(35)

Use the given information to evaluate the limit. limxcf(x)=11\lim _ { x \rightarrow c } f ( x ) = 11 limxcf(x)\lim _ { x\rightarrow c } \sqrt { f ( x ) }

(Multiple Choice)
4.7/5
(39)

Find the limit by direct substitution. limx4(11x2)\lim _ { x \rightarrow 4 } \left( 11 - x ^ { 2 } \right)

(Multiple Choice)
4.7/5
(28)

Use the derivative of f(x)=5x3+15xf ( x ) = 5 x ^ { 3 } + 15 x to determine any points on the graph of f(x)f ( x ) at which the tangent line is horizontal.

(Multiple Choice)
4.8/5
(33)

Find the limit of the sequence (if it exists). αn=(4)n+1n2\alpha _ { n } = \frac { ( - 4 ) ^ { n + 1 } } { n ^ { 2 } }

(Multiple Choice)
4.8/5
(39)
Showing 181 - 200 of 259
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)