Exam 12: Limits and An Introduction To Calculus

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the first five terms of the sequence. αn=(2)nn\alpha _ { n } = \frac { ( - 2 ) ^ { n } } { n }

(Multiple Choice)
4.8/5
(34)

Find the first five terms of the sequence. an=n+5n2+5a _ { n } = \frac { n + 5 } { n ^ { 2 } + 5 }

(Multiple Choice)
4.9/5
(38)

Find the limit (if it exists). limt+6t23t+19t2+3t+3\lim _ { t \rightarrow + \infty } \frac { 6 t ^ { 2 } - 3 t + 1 } { - 9 t ^ { 2 } + 3 t + 3 }

(Multiple Choice)
5.0/5
(30)

Use the function and its derivative to determine any points on the graph of ff at which the tangent line is horizontal.Use a graphing utility to verify your results. f(x)=5x6+6x5,f(x)=30x5+30x4f ( x ) = 5 x ^ { 6 } + 6 x ^ { 5 } , \quad f ^ { \prime } ( x ) = 30 x ^ { 5 } + 30 x ^ { 4 }

(Multiple Choice)
4.9/5
(32)

Find limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } . f(x)=42xx2f ( x ) = 4 - 2 x - x ^ { 2 }

(Multiple Choice)
4.8/5
(39)

Use the given information to evaluate the limit. limxcf(x)=2\lim _ { x \rightarrow c } f ( x ) = 2 , limxcg(x)=10\lim _ { x \rightarrow c } g ( x ) = 10 limxc[f(x)+g(x)]\lim _ { x \rightarrow c } [ f ( x ) + g ( x ) ]

(Multiple Choice)
4.8/5
(33)

Use the graph to determine the limit visually (if it exists).Then identify another function g2(x)that agrees with the given function at all but one point. g(x)=x3xx1g ( x ) = \frac { x ^ { 3 } - x } { x - 1 }  Use the graph to determine the limit visually (if it exists).Then identify another function g<sub>2</sub>(x)that agrees with the given function at all but one point.    g ( x ) = \frac { x ^ { 3 } - x } { x - 1 }        \lim _ { x \rightarrow - 1 } g ( x ) = ?    limx1g(x)=?\lim _ { x \rightarrow - 1 } g ( x ) = ?

(Multiple Choice)
4.9/5
(38)

Select correct graph of the following function. y=5x1x2y = \frac { 5 x } { 1 - x ^ { 2 } }

(Multiple Choice)
4.9/5
(39)

Find limx7x+4x3\lim _ { x \rightarrow 7 } \frac { \sqrt { x + 4 } } { x - 3 } by direct substitution.

(Multiple Choice)
4.8/5
(23)

Select the correct graph of the following function. y=5x2xy = \frac { 5 x } { 2 - x }

(Multiple Choice)
5.0/5
(39)

Find limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } for f(x)=x15f ( x ) = \sqrt { x - 15 } .

(Multiple Choice)
4.8/5
(48)

Select the correct graph for the following function using a graphing utility. f(x)=x+4x2+7x+10f ( x ) = \frac { x + 4 } { x ^ { 2 } + 7 x + 10 }

(Multiple Choice)
4.8/5
(38)

Algebraically evaluate the limit (if it exists)by the appropriate technique(s). limx100+10xx100\lim _ { x \rightarrow 100 ^ { + } } \frac { 10 - \sqrt { x } } { x - 100 }

(Multiple Choice)
4.9/5
(33)

Find the derivative of the function. f(x)=x4f ( x ) = \sqrt { x - 4 }

(Multiple Choice)
4.9/5
(34)

Find the limit (if it exists). limx67x9x2\lim _ { x \rightarrow - \infty } \frac { 6 } { 7 } x - \frac { 9 } { x ^ { 2 } }

(Multiple Choice)
4.8/5
(34)

Find the limit of the sequence (if it exists). αn=2nn2+7\alpha _ { n } = \frac { 2 n } { n ^ { 2 } + 7 }

(Multiple Choice)
4.9/5
(33)

Use the limit process to find the slope of the graph of 7x6x27 x - 6 x ^ { 2 } at (3,33)( 3 , - 33 ) .

(Multiple Choice)
4.8/5
(29)

Evaluate k=120(k3+6)\sum _ { k = 1 } ^ { 20 } \left( k ^ { 3 } + 6 \right) using the summation formulas and properties.

(Multiple Choice)
4.8/5
(32)

Graphically approximate the limit (if it exists)by using a graphing utility to graph the function. limx3+3x9x2\lim _ { x \rightarrow 3 ^ { + } } \frac { 3 - x } { 9 - x ^ { 2 } }

(Multiple Choice)
4.9/5
(36)
Showing 241 - 259 of 259
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)