Exam 12: Limits and An Introduction To Calculus

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find a formula for the slope of the graph of ff at the point (x,f(x))( x , f ( x ) ) .Then use it to find the slope at the given point. f(x)=1x+8,(0,18)f ( x ) = \frac { 1 } { x + 8 } , \quad \left( 0 , \frac { 1 } { 8 } \right)

(Multiple Choice)
4.9/5
(42)

Use the position function s(t)=16t2102s ( t ) = 16 t ^ { 2 } - 102 to find the velocity in feet/second at time t=2t = 2 seconds.The velocity at time t=ct = c seconds is given by lim[s(c)s(t)](ct)c?t\lim \frac { [ s ( c ) - s ( t ) ] } { ( c - t )_{c?t} } .

(Multiple Choice)
5.0/5
(40)

Find limnS(n)\lim _ { n \rightarrow \infty }S ( n ) . i=1ni3n4\sum _ { i = 1 } ^ { n } \frac { i ^ { 3 } } { n ^ { 4 } }

(Multiple Choice)
4.8/5
(34)

Graph the function.Determine the limit (if it exists)by evaluating the corresponding one-sided limits. limx51x2+5\lim _ { x \rightarrow 5 } \frac { 1 } { x ^ { 2 } + 5 }

(Multiple Choice)
4.8/5
(38)

Select the correct graph for the following function using a graphing utility. f(x)=5xtan10xf ( x ) = \frac { 5 x } { \tan 10 x }

(Multiple Choice)
4.7/5
(36)

Find the limit (if it exists). limx[x(x+5)28]\lim _ { x \rightarrow - \infty } \left[ \frac { x } { ( x + 5 ) ^ { 2 } } - 8 \right]

(Multiple Choice)
4.7/5
(38)

Evaluate j=125(j33j2)\sum _ { j = 1 } ^ { 25 } \left( j ^ { 3 } - 3 j ^ { 2 } \right) using the summation formulas and properties.

(Multiple Choice)
4.8/5
(41)

Select correct graph of the following function. y=28x2y = 2 - \frac { 8 } { x ^ { 2 } }

(Multiple Choice)
4.8/5
(41)

Select the correct function for the graph using oblique asymptotes as aids. Select the correct function for the graph using oblique asymptotes as aids.

(Multiple Choice)
4.9/5
(36)

Determine limx6x6x236\lim _ { x \rightarrow 6 } \frac { | x - 6 | } { x ^ { 2 } - 36 } (if it exists)by evaluating the corresponding one-sided limits.

(Multiple Choice)
4.8/5
(37)

Find the first five terms of the sequence. αn=n2n+2\alpha _ { n } = \frac { n } { 2 n + 2 }

(Multiple Choice)
4.9/5
(31)

Use the limit process to find the area of the region between the graph of the function and the x-axis over the specified interval. Function Interval f(x)=8x- [0,1]

(Multiple Choice)
4.8/5
(34)

Approximate the area of the indicated region under the given curve using five rectangles. f(x)=3x2f ( x ) = 3 - x ^ { 2 }  Approximate the area of the indicated region under the given curve using five rectangles.  f ( x ) = 3 - x ^ { 2 }

(Multiple Choice)
4.9/5
(31)

Find limy06+y6y\lim _ { y \rightarrow 0 } \frac { \sqrt { 6 + y } - \sqrt { 6 } } { y } .

(Multiple Choice)
4.9/5
(40)

Determine limx10x10x2100\lim _ { x \rightarrow 10 } \frac { | x - 10 | } { x ^ { 2 } - 100 } (if it exists)by evaluating the corresponding one-sided limits.

(Multiple Choice)
4.8/5
(23)

Find a formula for the slope of the graph of ff at the point (x,f(x))( x , f ( x ) ) .Then use it to find the slope at the given point. f(x)=x3,(2,8)f ( x ) = x ^ { 3 } , \quad ( 2,8 )

(Multiple Choice)
4.9/5
(32)

Find the limit by direct substitution. limx2(11x93x+9)\lim _ { x \rightarrow - 2 } \left( \frac { 11 x - 9 } { 3 x + 9 } \right)

(Multiple Choice)
4.9/5
(40)

Use the limit process to find the area of the region between f(x)=18(x2+8x)f ( x ) = \frac { 1 } { 8 } \left( x ^ { 2 } + 8 x \right) and the x-axis on the interval [1,8].Round your answer upto 1 decimal places.

(Multiple Choice)
4.8/5
(34)

Find limx9x7x2+11x+18\lim _ { x \rightarrow 9 } \frac { x - 7 } { x ^ { 2 } + 11 x + 18 } by direct substitution.

(Multiple Choice)
4.8/5
(34)

Use the slope m=24m = 24 to find an equation of the tangent line to the graph at the given point. f(x)=x21f ( x ) = x ^ { 2 } - 1

(Multiple Choice)
4.9/5
(31)
Showing 221 - 240 of 259
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)