Exam 12: Limits and An Introduction To Calculus

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } . f(x)=1x+5f ( x ) = \frac { 1 } { x + 5 }

(Multiple Choice)
4.8/5
(41)

Find the limit (if it exists).Use a graphing utility to verify your result graphically. limt4t364t4\lim _ { t \rightarrow 4 } \frac { t ^ { 3 } - 64 } { t - 4 }

(Multiple Choice)
4.8/5
(38)

Select the correct graph for the following function using a graphing utility. f(x)=1e8xxf ( x ) = \frac { 1 - e ^ { - 8 x } } { x }

(Multiple Choice)
4.8/5
(35)

Find the limit of the sequence (if it exists). αn=(n+6)!n!\alpha _ { n } = \frac { ( n + 6 ) ! } { n ! }

(Multiple Choice)
4.9/5
(36)

Find limx29xx+9\lim _ { x \rightarrow 2 } \frac { 9 x } { \sqrt { x + 9 } } by direct substitution.

(Multiple Choice)
4.9/5
(43)

Find limx5[g(x)f(x)]\lim _ { x \rightarrow 5 } [ g ( x ) - f ( x ) ] for f(x)=5x3f ( x ) = 5 x ^ { 3 } and g(x)=x2+93x2g ( x ) = \frac { \sqrt { x ^ { 2 } + 9 } } { 3 x ^ { 2 } } .

(Multiple Choice)
4.8/5
(28)

Find the derivative of the function. f(x)=1x10f ( x ) = \frac { 1 } { x - 10 }

(Multiple Choice)
4.8/5
(33)

Find the limit (if it exists). limxπ/24(cosx1)sinx\lim _ { x \rightarrow \pi / 2 } \frac { 4 ( \cos x - 1 ) } { \sin x }

(Multiple Choice)
4.8/5
(36)

Select the correct graph for the following function using a graphing utility. f(x)=cos2x12xf ( x ) = \frac { \cos 2 x - 1 } { 2 x }

(Multiple Choice)
4.9/5
(19)

Find the limit (if it exists). limx(3+5x5+5x)\lim _ { x \rightarrow \infty } \left( \frac { 3 + 5 x } { 5 + 5 x } \right)

(Multiple Choice)
4.8/5
(29)

Find the limit by direct substitution. limx6(48x)\lim _ { x \rightarrow 6 } \left( - \frac { 48 } { x } \right)

(Multiple Choice)
4.9/5
(34)

Algebraically evaluate the limit (if it exists)by the appropriate technique(s).Round your answer to four decimal places. limx0x+22x\lim _ { x \rightarrow 0 ^ { - } } \frac { \sqrt { x + 2 } - \sqrt { 2 } } { x }

(Multiple Choice)
4.8/5
(36)

Use asymptotes to match f(x)=3x2x22f ( x ) = \frac { 3 x ^ { 2 } } { x ^ { 2 } - 2 } with its graph.

(Multiple Choice)
4.8/5
(34)

Find the limit of the sequence. 1n(n+1n[n(n+3)4])\frac { 1 } { n } \left( n + \frac { 1 } { n } \left[ \frac { n ( n + 3 ) } { 4 } \right] \right)

(Multiple Choice)
4.8/5
(28)

Use the limit process to find the area of the region between the graph of the function and the x-axis over the specified interval. Function Interval f(x)=3x-4 [2,5]

(Multiple Choice)
4.7/5
(42)

Find the limit (if it exists).Round your answer to four decimal places. limz07z7z\lim _ { z \rightarrow 0 } \frac { \sqrt { 7 - z } - \sqrt { 7 } } { z }

(Multiple Choice)
4.9/5
(36)

Select the correct graph for the following function using a graphing utility.Determine whether the limit exists or not. f(x)=sin5πxf ( x ) = \sin 5 \pi x , limx2f(x)\lim _ { x \rightarrow 2 } f ( x )

(Multiple Choice)
4.9/5
(47)

Find limx3(13x37x)\lim _ { x \rightarrow - 3 } \left( \frac { 1 } { 3 } x ^ { 3 } - 7 x \right) by direct substitution.

(Multiple Choice)
4.8/5
(27)

Find limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } for f(x)=4+6xf ( x ) = - 4 + 6 x .

(Multiple Choice)
4.8/5
(39)

The average typing speed S (in words per minute)for a student after t weeks of lessons is given by S=160t266+t2S = \frac { 160 t ^ { 2 } } { 66 + t ^ { 2 } } What is the limit of S as t approaches infinity?

(Multiple Choice)
4.8/5
(33)
Showing 141 - 160 of 259
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)