Exam 12: Limits and An Introduction To Calculus

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the slope of the graph of ff at the given point. f(x)=x21f ( x ) = x ^ { 2 } - 1

(Multiple Choice)
4.9/5
(36)

Select a graph of the function and the tangent line at the point (1,f(1))( 1 , f ( 1 ) ) .Use the graph to approximate the slope of the tangent line. f(x)=x24x+4f ( x ) = x ^ { 2 } - 4 x + 4

(Multiple Choice)
4.9/5
(46)

Evaluate the sum using the summation formula and property. k=135(2k+3)\sum _ { k = 1 } ^ { 35 } ( 2 k + 3 )

(Multiple Choice)
4.8/5
(35)

Use the graph to find limx32x218x3\lim _ { x \rightarrow 3 } \frac { 2 x ^ { 2 } - 18 } { x - 3 } .  Use the graph to find  \lim _ { x \rightarrow 3 } \frac { 2 x ^ { 2 } - 18 } { x - 3 }  .

(Multiple Choice)
4.8/5
(27)

Select the correct graph for the following function using a graphing utility. f(x)=sin(2x)2xf ( x ) = \frac { \sin ( 2 x ) } { 2 x }

(Multiple Choice)
4.9/5
(32)

Given that limxcf(x)=7, and limxcg(x)=3\lim _ { x \rightarrow c } f ( x ) = 7 , \text { and } \lim _ { x \rightarrow c } g ( x ) = 3 ,find limxch(x)=[f(x)+g(x)]2\lim_{x \rightarrow c} h ( x ) = [ f ( x ) + g ( x ) ] ^ { 2 } .

(Multiple Choice)
4.8/5
(23)

Find the limit (if it exists). limx(9x215x25)\lim _ { x \rightarrow \infty } \left( \frac { 9 x ^ { 2 } - 1 } { 5 x ^ { 2 } - 5 } \right)

(Multiple Choice)
4.8/5
(30)

Find limx2g(x)\lim _ { x \rightarrow 2 } g ( x ) . g(x)=x2+53x2g ( x ) = \frac { \sqrt { x ^ { 2 } + 5 } } { 3 x ^ { 2 } }

(Multiple Choice)
4.9/5
(41)

Use the limit process to find the area of the region between the graph of the function and the x-axis over the specified interval. Function Interval f(x)=-2x+5 [0,2]

(Multiple Choice)
4.8/5
(33)

Use the limit process to find the area of the region between the graph of the function and the x-axis over the specified interval. Function Interval f(x)=8x- [0,2]

(Multiple Choice)
4.9/5
(32)

Find the limit by direct substitution. limx4(4xx2+1)\lim _ { x \rightarrow - 4 } \left( \frac { 4 x } { x ^ { 2 } + 1 } \right)

(Multiple Choice)
4.8/5
(39)

Rewrite the sum as a rational function S(n). i=1ni3n3\sum _ { i = 1 } ^ { n } \frac { i ^ { 3 } } { n ^ { 3 } }

(Multiple Choice)
4.9/5
(26)

Use the given information to evaluate the limit. limxcf(x)=12\lim _ { x \rightarrow c }f ( x ) = 12 , limxcg(x)=4\lim _ { x \rightarrow c } g ( x ) = - 4 limxc[f(x)+g(x)]2\lim _ { x \rightarrow c } [ f ( x ) + g ( x ) ] ^ { 2 }

(Multiple Choice)
4.7/5
(30)

Graphically approximate the limit (if it exists)by using a graphing utility to graph the function.Round your answer to four decimal places. limx0x+55x\lim _ { x \rightarrow 0 ^ { - } } \frac { \sqrt { x + 5 } - \sqrt { 5 } } { x }

(Multiple Choice)
4.9/5
(33)

Use the limit process to find the slope of the graph of the function at the specified point.Use a graphing utility to confirm your result. g(x)=x28x,(7,7)g ( x ) = x ^ { 2 } - 8 x , \quad ( 7 , - 7 )

(Multiple Choice)
4.7/5
(31)

Find limx7x7x249\lim _ { x \rightarrow 7 ^ { - } } \frac { x - 7 } { x ^ { 2 } - 49 } .

(Multiple Choice)
4.8/5
(30)

Select the graph of the derivative of a function.It is not necessary to find the derivative of the function. f(x)=x5f ( x ) = x ^ { 5 }

(Multiple Choice)
4.8/5
(40)

Find limt4t364t4\lim _ { t \rightarrow 4 } \frac { t ^ { 3 } - 64 } { t - 4 } .

(Multiple Choice)
4.8/5
(30)

Algebraically evaluate the limit (if it exists)by the appropriate technique(s). limx4x4x216\lim _ { x \rightarrow 4 } \frac { x - 4 } { x ^ { 2 } - 16 }

(Multiple Choice)
4.9/5
(33)

Graphically approximate the limit (if it exists)by using a graphing utility to graph the function. limx36+6xx36\lim _ { x \rightarrow 36 ^ { + } } \frac { 6 - \sqrt { x } } { x - 36 }

(Multiple Choice)
4.9/5
(37)
Showing 41 - 60 of 259
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)