Exam 12: Limits and An Introduction To Calculus

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the limit by direct substitution. limx15x+1x10\lim _ { x \rightarrow 15 } \frac { \sqrt { x + 1 } } { x - 10 }

(Multiple Choice)
4.8/5
(27)

Find a formula for the slope of the graph of ff at the point (x,f(x))( x , f ( x ) ) .Then use it to find the slope at the given point. f(x)=x1,(17,4)f ( x ) = \sqrt { x - 1 } , \quad ( 17,4 )

(Multiple Choice)
4.8/5
(32)

Find limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } for f(x)=x3f ( x ) = \sqrt { x - 3 } .

(Multiple Choice)
4.9/5
(34)

Evaluate j=120(j34j2)\sum _ { j = 1 } ^ { 20 } \left( j ^ { 3 } - 4 j ^ { 2 } \right) using the summation formulas and properties.

(Multiple Choice)
4.9/5
(45)

Find the limit (if it exists). limx(4x6)\lim _ { x \rightarrow \infty } \left( \frac { 4 } { x } - 6 \right)

(Multiple Choice)
4.7/5
(44)

Select the correct graph for the following function and find the limit (if it exists)as x approaches 2. f(x)={5x+1,x<2x+9,x2f ( x ) = \left\{ \begin{array} { l } 5 x + 1 , x < 2 \\x + 9 , x \geq 2\end{array} \right.

(Multiple Choice)
4.8/5
(31)

Find the limit (if it exists).Use a graphing utility to verify your result graphically. limx05x+51x\lim _ { x \rightarrow 0 } \frac { \frac { 5 } { x + 5 } - 1 } { x }

(Multiple Choice)
4.8/5
(39)

Select the correct graph for the following function using a graphing utility. f(x)=e4x14xf ( x ) = \frac { e ^ { 4 x } - 1 } { 4 x }

(Multiple Choice)
4.7/5
(44)

Use the graph to determine limx0x2xx\lim _ { x \rightarrow 0 } \frac { x ^ { 2 } - x } { x } (if it exists).  Use the graph to determine  \lim _ { x \rightarrow 0 } \frac { x ^ { 2 } - x } { x }  (if it exists).

(Multiple Choice)
4.7/5
(32)

Find the derivative of the function. f(x)=8f ( x ) = 8

(Multiple Choice)
4.8/5
(36)

Find the derivative of f(x)=2x2+4x+9f ( x ) = 2 x ^ { 2 } + 4 x + 9 .

(Multiple Choice)
4.7/5
(34)

Find the limit (if it exists). limt+t2t+2\lim _ { t \rightarrow + \infty } \frac { t ^ { 2 } } { t + 2 }

(Multiple Choice)
4.8/5
(31)

Find a formula for the slope of the graph of f(x)=7x+4f ( x ) = \frac { 7 } { x + 4 } .

(Multiple Choice)
4.9/5
(35)

Find limy010+y10y\lim _{y \rightarrow 0} \frac{\sqrt{10+y}-\sqrt{10}}{y} .

(Multiple Choice)
4.9/5
(30)

Find limx4f(x)\lim _ { x \rightarrow 4 } f ( x ) . f(x)=x5xf ( x ) = \frac { x } { 5 - x }

(Multiple Choice)
4.8/5
(31)

Find a formula for the slope of the graph of ff at the point (x,f(x))( x , f ( x ) ) .Then use it to find the slope at the given point. f(x)=1x+4,(3,1)f ( x ) = \frac { 1 } { x + 4 } , \quad ( - 3,1 )

(Multiple Choice)
4.7/5
(45)

Find a formula for the slope of the graph of ff at the point (x,f(x))( x , f ( x ) ) .Then use it to find the slope at the given point. f(x)=3x2,(1,2)f ( x ) = 3 - x ^ { 2 } , \quad ( - 1,2 )

(Multiple Choice)
4.7/5
(27)

Find the limit (if it exists). limx+6x26(x5)2\lim _ { x \rightarrow + \infty } \frac { 6 x ^ { 2 } - 6 } { ( x - 5 ) ^ { 2 } }

(Multiple Choice)
4.8/5
(35)

Use the limit process to find the area of the region between f(x)=x2+2f ( x ) = x ^ { 2 } + 2 and the x-axis on the interval [0,9].

(Multiple Choice)
4.8/5
(30)

Evaluate k=120(k3+4)\sum _ { k = 1 } ^ { 20 } \left( k ^ { 3 } + 4 \right) using the summation formulas and properties.

(Multiple Choice)
4.8/5
(38)
Showing 61 - 80 of 259
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)