Exam 14: Further Integration Techniques and Applications of the Integral

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the average of the function f(x)=9x28xf ( x ) = 9 x ^ { 2 } - 8 x over [0,8][ 0,8 ] .

(Short Answer)
4.9/5
(40)

Evaluate the integral. 12xln(5x)dx\int _ { 1 } ^ { 2 } x \ln ( 5 x ) \mathrm { d } x

(Multiple Choice)
4.8/5
(35)

Find the average of the function f(x)=9x26xf ( x ) = 9 x ^ { 2 } - 6 x over [0,2][ 0,2 ] .

(Multiple Choice)
5.0/5
(32)

Find the general solution of the differential equation. dy dx=(x+1)y2\frac { \mathrm { d } y } { \mathrm {~d} x } = ( x + 1 ) y ^ { 2 } Solve for y as a function of x.

(Multiple Choice)
4.8/5
(39)

Evaluate the integral. 01(x+3)ex dx\int _ { 0 } ^ { 1 } ( x + 3 ) e ^ { x } \mathrm {~d} x

(Multiple Choice)
5.0/5
(36)

Calculate the 5-unit moving average of the given function. f(x)=8x3f ( x ) = 8 x ^ { 3 }

(Multiple Choice)
4.8/5
(26)

Evaluate the integral. ​ w17lnwdw\int w ^ { - \frac { 1 } { 7 } } \ln w d w

(Essay)
4.7/5
(33)

Decide whether the integral converges. If the integral converges, compute its value. 1+1x1.5 dx\int _ { 1 } ^ { + \infty } \frac { 1 } { x ^ { 1.5 } } \mathrm {~d} x

(Multiple Choice)
4.8/5
(38)

The weekly demand for your company's Lo-Cal Mousse is modeled by the equation q(t)=18e2t21+e2t2q ( t ) = \frac { 18 e ^ { 2 t - 2 } } { 1 + e ^ { 2 t - 2 } } where t is time from now in weeks and q(t) is the number of gallons sold per week. Evaluate the integral 018e2t21+e2t2 dt\int _ { - \infty } ^ { 0 } \frac { 18 e ^ { 2 t - 2 } } { 1 + e ^ { 2 t - 2 } } \mathrm {~d} t .

(Multiple Choice)
4.8/5
(36)

The Laplace transform F(x) of a function f(t) is given by the formula. F(x)=0+f(t)ext dtF ( x ) = \int _ { 0 } ^ { + \infty } f ( t ) e ^ { - x t } \mathrm {~d} t Find F(x) if f(t)=entf ( t ) = e ^ { n t } (n constant).

(Multiple Choice)
4.8/5
(32)

For the differential equation, find the particular solution y=0y = 0 when x=0x = 0 . dy dx=x314x\frac { \mathrm { d } y } { \mathrm {~d} x } = x ^ { 3 } - 14 x

(Multiple Choice)
4.8/5
(35)

Find the area of the indicated region. ​ Enclosed by y=2lnxy = 2 \ln x and y=x2y = x - 2 . (Round answer to four significant digits.) [First use technology to determine approximately where the graphs cross.]

(Short Answer)
4.8/5
(25)

Find the total value of the given income stream and also find its present value (at the beginning of the given interval) using the given interest rate. ​ R(t)=10,000R ( t ) = 10,000 , 0t50 \leq t \leq 5 , at 5% ​ Please enter your answer in the form TV = , PV = . Give the answer to the nearest cent if necessary. ​ TV = $__________ PV = $__________

(Essay)
4.8/5
(38)

Evaluate the integral. x(x3)2 dx\int \frac { x } { ( x - 3 ) ^ { 2 } } \mathrm {~d} x

(Multiple Choice)
4.8/5
(31)

Find the area of the region between y=exy = e ^ { x } and y=12xy = \frac { 1 } { 2 } x for x in [0,8][ 0,8 ] .

(Multiple Choice)
4.8/5
(39)

Decide whether the integral converges. If the integral converges, compute its value. 4+x dx\int _ { 4 } ^ { + \infty } x \mathrm {~d} x

(Multiple Choice)
4.9/5
(38)

Find the total value of the given income stream and also find its present value (at the beginning of the given interval) using the given interest rate. R(t)=60,000+4,000tR ( t ) = 60,000 + 4,000 t , 0t50 \leq t \leq 5 , at 11%

(Multiple Choice)
4.8/5
(26)

Find the area of the region enclosed by y=16xy = 16 x and y=2x4y = 2 x ^ { 4 } .

(Multiple Choice)
4.8/5
(32)

Find the area of the region between y=exy = e ^ { - x } and y=4xy = - 4 x for x in [0,3][ 0,3 ] .

(Multiple Choice)
4.7/5
(40)

Find the areas of the indicated regions. Choose the correct letter for each question -256

(Multiple Choice)
5.0/5
(40)
Showing 21 - 40 of 118
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)