Exam 7: Symmetric Matrices and Quadratic Forms

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use the given covariance matrix to compute the percentage of the total variance that is contained in the first principal component. Round to one decimal place. - [263126311131104055255030]\left[ \begin{array} { l l l l l l } 26 & 31 & 26 & 31 & 11 & 31 \\ 10 & 40 & 55 & 25 & 50 & 30 \end{array} \right]

(Multiple Choice)
4.7/5
(39)

Orthogonally diagonalize the matrix, giving an orthogonal matrix P and a diagonal matrix D. - [3226]\left[ \begin{array} { l l } 3 & 2 \\ 2 & 6 \end{array} \right]

(Multiple Choice)
4.8/5
(41)

 Find the maximum value of Q(x) subject to the constraint xTx=1\text { Find the maximum value of } Q ( x ) \text { subject to the constraint } _x T _ { x = 1 } \text {. } - Q(x)=14x12+14x22+18x23+26x1x2+18x1x3+18x2x3Q ( x ) = 14 x _ { 1 } ^ { 2 } + 14 x _ { 2 } ^ { 2 } + 18x \frac { 2 } { 3 } + 26 x _ { 1 } x _ { 2 } + 18 x _ { 1 } x _ { 3 } + 18 x _ { 2 } x _ { 3 }

(Multiple Choice)
4.9/5
(33)

Use the given covariance matrix to compute the percentage of the total variance that is contained in the first principal component. Round to one decimal place. - [101314639617555]\left[ \begin{array} { r r r r } 10 & 13 & 1 & 4 \\6 & 3 & 9 & 6 \\17 & 5 & 5 & 5\end{array} \right]

(Multiple Choice)
5.0/5
(35)

Orthogonally diagonalize the matrix, giving an orthogonal matrix P and a diagonal matrix D. - [117771177711]\left[ \begin{array} { r r r } 11 & 7 & 7 \\7 & 11 & 7 \\7 & 7 & 11\end{array} \right]

(Multiple Choice)
4.8/5
(40)
Showing 21 - 25 of 25
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)