Exam 5: Inverse, Exponential, and Logarithmic Functions

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use the definition of inverses to determine whether f and g are inverses. - f(x)=x33,g(x)=x+33f ( x ) = x ^ { 3 } - 3 , \quad g ( x ) = \sqrt [ 3 ] { x + 3 }

(Multiple Choice)
4.9/5
(33)

If the function is one-to-one, find its inverse. If not, write "not one-to-one." - f(x)=(x+6)2f ( x ) = ( x + 6 ) ^ { 2 }

(Multiple Choice)
4.8/5
(35)

Use the change of base rule to find the logarithm to four decimal places. - log4.23.2\log _ { 4.2 } 3.2

(Multiple Choice)
4.8/5
(34)

Solve the problem. -Which of the following is the same as 3log(4x)3 \log ( 4 x ) for x>0x > 0 ?

(Multiple Choice)
4.8/5
(46)

Solve the equation and express the solution in exact form. - log3x=log2+log(x+4)\log 3 x = \log 2 + \log ( x + 4 )

(Multiple Choice)
4.8/5
(39)

Use properties of logarithms to evaluate the expression. - log10(0.01)3\log _ { 10 } ( 0.01 ) ^ { 3 }

(Multiple Choice)
4.8/5
(38)

Given log1020.3010 and log1030.4771\log _ { 10 } 2 \approx 0.3010 \text { and } \log _ { 10 } 3 \approx 0.4771 find the logarithm without using a calculator. - log10274\log _ { 10 } \frac { 27 } { 4 }

(Multiple Choice)
4.9/5
(33)

If the function is one-to-one, find its inverse. If not, write "not one-to-one." -{(-3, -4), (-2, -4), (-1, 3), (0, 8)}

(Multiple Choice)
4.8/5
(38)

Solve the problem. -The decibel level D\mathrm { D } of a sound is related to its intensity I\mathrm { I } by D=10log(II0)\mathrm { D } = 10 \log \left( \frac { \mathrm { I } } { \mathrm { I } _ { 0 } } \right) . If I0\mathrm { I } _ { 0 } is 101210 ^ { - 12 } , then what is the intensity of a noise measured at 78 decibels? Express your answer in scientific notation, rounding to three significant digits, if necessary.

(Multiple Choice)
4.8/5
(38)

Find the value. Give an approximation to four decimal places. - ln0.000814\ln 0.000814

(Multiple Choice)
4.8/5
(34)

Solve the equation. Round to the nearest thousandth. - 9e(3x+9)=59 \mathrm { e } ^ { ( 3 x + 9 ) } = 5

(Multiple Choice)
4.8/5
(30)

Choose the one alternative that best completes the statement or answers the question. -The hydrogen potential, pH\mathrm { pH } , of a substance is defined by pH=log[H+]\mathrm { pH } = - \log \left[ \mathrm { H } ^ { + } \right] , where [H+]\left[ \mathrm { H } ^ { + } \right] is measured in moles per liter. Find the pH of a sample of lake water whose [H+]\left[ \mathrm { H } ^ { + } \right] is 3.05×1093.05 \times 10 ^ { - 9 } moles per liter. (Round to the nearest tenth.)

(Multiple Choice)
4.9/5
(38)

rite the word or phrase that best completes each statement or answers the question. -Explain how to solv e2x+8ex20=0 analytically. e ^ { 2 x } + 8 e ^ { x } - 20 = 0 \text { analytically. }

(Essay)
4.8/5
(28)

Solve the equation and express the solution in exact form. - log4(log4x)=1\log _ { 4 } \left( \log _ { 4 } x \right) = 1

(Multiple Choice)
4.8/5
(35)

Solve the problem. -The height in meters of women of a certain tribe is approximated by h=0.52+2log(t/3)h = 0.52 + 2 \log ( t / 3 ) where tt is the woman's age in years and 1t201 \leq t \leq 20 . Estimate the height (to the nearest hundredth) of a woman of the tribe 4 years of age.

(Multiple Choice)
4.9/5
(35)

Solve the equation. - ex5=(1e6)x+4e ^ { x - 5 } = \left( \frac { 1 } { e ^ { 6 } } \right) ^ { x + 4 }

(Multiple Choice)
4.9/5
(30)

Use the properties of logarithms to rewrite the expression. Simplify the result if possible. Assume all variables represent positive real numbers. - logb(m2p6n4b8)\log b \left( \frac { m ^ { 2 } p ^ { 6 } } { n ^ { 4 } b ^ { 8 } } \right)

(Multiple Choice)
4.8/5
(38)

Write the expression as a single logarithm with coefficient 1. Assume all variables represent positive real numbers with a1 and b1a \neq 1 \text { and } b \neq 1 - 13log3(x6)+16log3(x6)19log3x\frac { 1 } { 3 } \log _ { 3 } \left( x ^ { 6 } \right) + \frac { 1 } { 6 } \log _ { 3 } \left( x ^ { 6 } \right) - \frac { 1 } { 9 } \log _ { 3 } x

(Multiple Choice)
4.8/5
(30)

Determine whether or not the function is one-to-one. -Determine whether or not the function is one-to-one. -

(Multiple Choice)
4.9/5
(28)

Find the value. Give an approximation to four decimal places. - ln797+ln27\ln 797 + \ln 27

(Multiple Choice)
4.9/5
(41)
Showing 281 - 300 of 472
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)