Exam 5: Inverse, Exponential, and Logarithmic Functions

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Solve the problem. -Suppose f(x)=34.1+1.3log(x+1)f ( x ) = 34.1 + 1.3 \log ( x + 1 ) models salinity of ocean water to depths of 1000 meters at a certain latitude. xx is the depth in meters and f(x)f ( x ) is in grams of salt per kilogram of seawater. Approximate the depth (to the nearest tenth of a meter) where the salinity equals 36 .

(Multiple Choice)
5.0/5
(40)

Graph the exponential function using transformations where appropriate. - f(x)=3x+1f ( x ) = 3 ^ { x + 1 }  Graph the exponential function using transformations where appropriate. - f ( x ) = 3 ^ { x + 1 }

(Multiple Choice)
4.8/5
(26)

Write the expression as a single logarithm with coefficient 1. Assume all variables represent positive real numbers with a1 and b1a \neq 1 \text { and } b \neq 1 - 13log3x6+16log3x619log3x\frac { 1 } { 3 } \log _ { 3 } x ^ { 6 } + \frac { 1 } { 6 } \log _ { 3 } x ^ { 6 } - \frac { 1 } { 9 } \log _ { 3 } x

(Multiple Choice)
4.8/5
(34)

Use a graphing calculator to estimate the solution set of the equation. Round to the nearest hundredth. - 5(x+1)=22.005 ( x + 1 ) = 22.00

(Multiple Choice)
4.7/5
(40)

Graph the function. - f(x)=3xf(x)=3^{-x}  Graph the function. - f(x)=3^{-x}

(Multiple Choice)
4.8/5
(34)

Graph the exponential function using transformations where appropriate. - f(x)=4x+14f ( x ) = 4 ^ { x + 1 } - 4  Graph the exponential function using transformations where appropriate. - f ( x ) = 4 ^ { x + 1 } - 4

(Multiple Choice)
4.7/5
(36)

Determine the function value. -Suppose f(x)=logaxf ( x ) = \log _ { a } x and f(5)=2f ( 5 ) = 2 . Find f(25)f ( 25 )

(Multiple Choice)
4.9/5
(30)

If the function is one-to-one, find its inverse. If not, write "not one-to-one." - f(x)=4x+7f ( x ) = \frac { 4 } { x + 7 }

(Multiple Choice)
4.9/5
(33)

Write an equivalent expression in exponential form. - log100.1=1\log _ { 10 } 0.1 = - 1

(Multiple Choice)
4.7/5
(35)

Decide whether the given functions are inverses. - =\{(3,6),(3,3),(0,8)\} g=\{(3,3),(8,0),(6,6)\}

(Multiple Choice)
4.7/5
(28)

Find the function value. If the result is irrational, round your answer to the nearest thousandth. -Let f(x)=2xf ( x ) = 2 ^ { x } . Find f(2.28)f ( 2.28 ) .

(Multiple Choice)
4.9/5
(34)

Choose the one alternative that best completes the statement or answers the question. -An economist predicts that the buying power B(x)\mathrm { B } ( \mathrm { x } ) of a dollar x\mathrm { x } years from now will decrease according to the formula B(x)=0.09x\mathrm { B } ( \mathrm { x } ) = 0.09 \mathrm { x } . How much will today's dollar be worth in 2 years? Round the answer to the nearest cent.

(Multiple Choice)
4.9/5
(47)

Find the value. Give an approximation to four decimal places. - log(204×27)\log ( 204 \times 27 )

(Multiple Choice)
4.7/5
(40)

Find the domain and range of the inverse of the given function. - f(x)=9x+9f ( x ) = 9 x + 9

(Multiple Choice)
4.8/5
(27)

Find the present value of the future value. - P=(12)t/3.0P = \left( \frac { 1 } { 2 } \right) ^ { t / 3.0 } The half-life of Cesium 134m is 3.0 hours. If the formula gives the percent (as a decimal) remaining after time t (in hours), sketch P versus t.  Find the present value of the future value. - P = \left( \frac { 1 } { 2 } \right) ^ { t / 3.0 }  The half-life of Cesium 134m is 3.0 hours. If the formula gives the percent (as a decimal) remaining after time t (in hours), sketch P versus t.

(Multiple Choice)
4.9/5
(27)

Write the expression as a single logarithm with coefficient 1. Assume all variables represent positive real numbers with a1 and b1a \neq 1 \text { and } b \neq 1 - 34loga(p2q8)12loga(p5q2)\frac { 3 } { 4 } \log _ { a } \left( p ^ { 2 } q ^ { 8 } \right) - \frac { 1 } { 2 } \log _ { a } \left( p ^ { 5 } q ^ { 2 } \right)

(Multiple Choice)
4.8/5
(29)

Use the properties of logarithms to rewrite the expression. Simplify the result if possible. Assume all variables represent positive real numbers. - loga(4x5y)\log _ { a } \left( 4 x ^ { 5 } y \right)

(Multiple Choice)
4.8/5
(27)

Choose the one alternative that best completes the statement or answers the question. -Use the formula D=10.0log(S/S0)\mathrm { D } = 10.0 \log \left( \mathrm { S } / \mathrm { S } _ { 0 } \right) , where the loudness of a sound in decibels is determined by S\mathrm { S } , the number of watt /m2/ \mathrm { m } ^ { 2 } produced by the soundwave, and S0=1.00×1012\mathrm { S } _ { 0 } = 1.00 \times 10 ^ { - 12 } watt /m2/ \mathrm { m } ^ { 2 } . A certain noise produces 8.34×105watt/m28.34 \times 10 ^ { - 5 } \mathrm { watt } / \mathrm { m } ^ { 2 } of power. What is the decibel level of this noise? (Round to the nearest unit.)

(Multiple Choice)
4.8/5
(41)

Round your answer to the nearest tenth, when appropriate. Use the formula pH=log[H3O+],as \mathrm { pH } = - \log \left[ \mathrm { H } _ { 3 } \mathrm { O } ^ { + } \right] , \text {as } needed. -Find the pH\mathrm { pH } if [H3O+]=1.0×104\left[ \mathrm { H } _ { 3 } \mathrm { O } ^ { + } \right] = 1.0 \times 10 ^ { - 4 } .

(Multiple Choice)
4.9/5
(43)

Explain how the graph of can be obtained from the graph o -Give a definition for the following term: Logarithmic function .

(Essay)
4.8/5
(26)
Showing 161 - 180 of 472
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)