Exam 10: Conic Sections and Analytic Geometry

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Tech: Rotation of Axes - 3x24xy+3y22x+5y=103 x^{2}-4 x y+3 y^{2}-2 x+5 y=10  Tech: Rotation of Axes - 3 x^{2}-4 x y+3 y^{2}-2 x+5 y=10

(Multiple Choice)
4.8/5
(27)

Convert the equation to the standard form for an ellipse by completing the square on x and y. - 36x2+16y2+216x64y188=036 x ^ { 2 } + 16 y ^ { 2 } + 216 x - 64 y - 188 = 0

(Multiple Choice)
4.8/5
(30)

Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. - 4+=4 -4=4  Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. - \begin{array} { r }  4 x ^ { 2 } + y ^ { 2 } = 4 \\ y ^ { 2 } - 4 x ^ { 2 } = 4 \end{array}

(Multiple Choice)
4.8/5
(36)

Write Equations of Rotated Conics in Standard Form - x2+2xy+y2+xy4=0x ^ { 2 } + 2 x y + y ^ { 2 } + x - y - 4 = 0

(Multiple Choice)
4.9/5
(30)

Understand the Advantages of Parametric Representations -A baseball pitcher throws a baseball with an initial velocity of 126 feet per second at an angle of 2020 ^ { \circ } to the horizontal. The ball leaves the pitcher's hand at a height of 5 feet. Find parametric equations that describe the motion of the ball as a function of time. How long is the ball in the air? When is the ball at its maximum height? What is the maximum height of the ball?

(Multiple Choice)
4.7/5
(40)

Graph Parabolas with Vertices Not at the Origin - (y2)2=4(x3)( y - 2 ) ^ { 2 } = 4 ( x - 3 )

(Multiple Choice)
4.9/5
(32)

Graph Hyperbolas Not Centered at the Origin - (x+2)264(y3)2=64( x + 2 ) ^ { 2 } - 64 ( y - 3 ) ^ { 2 } = 64

(Multiple Choice)
4.9/5
(31)

Use the center, vertices, and asymptotes to graph the hyperbola. - (x2)24(y+2)225=1\frac { ( x - 2 ) ^ { 2 } } { 4 } - \frac { ( y + 2 ) ^ { 2 } } { 25 } = 1  Use the center, vertices, and asymptotes to graph the hyperbola. - \frac { ( x - 2 ) ^ { 2 } } { 4 } - \frac { ( y + 2 ) ^ { 2 } } { 25 } = 1

(Multiple Choice)
4.9/5
(35)

Graph the parabola. - x2=5yx ^ { 2 } = - 5 y  Graph the parabola. - x ^ { 2 } = - 5 y

(Multiple Choice)
4.7/5
(33)

Graph Hyperbolas Centered at the Origin - y24x29=1\frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1  Graph Hyperbolas Centered at the Origin - \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1

(Multiple Choice)
4.9/5
(30)

Parametric Equations 1 Use Point Plotting to Graph Plane Curves Described by Parametric Equations - x=(40cos30)t,y=6+(40sin30)t10t2;t=6x = \left( 40 \cos 30 ^ { \circ } \right) t , y = 6 + \left( 40 \sin 30 ^ { \circ } \right) t - 10 t ^ { 2 } ; t = 6

(Multiple Choice)
4.8/5
(42)

Match the equation to the graph. - (x1)2=7(y1)( x - 1 ) ^ { 2 } = 7 ( y - 1 )

(Multiple Choice)
4.8/5
(33)

Match the equation to the graph. - x29y216=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 16 } = 1

(Multiple Choice)
4.9/5
(29)

The Parabola 1 Graph Parabolas with Vertices at the Origin - x=10y2x = 10 y ^ { 2 }

(Multiple Choice)
4.8/5
(28)

Graph the ellipse and locate the foci. - x274+y294=1\frac { x ^ { 2 } } { \frac { 7 } { 4 } } + \frac { y ^ { 2 } } { \frac { 9 } { 4 } } = 1 Round to the nearest tenth if necessary.  Graph the ellipse and locate the foci. - \frac { x ^ { 2 } } { \frac { 7 } { 4 } } + \frac { y ^ { 2 } } { \frac { 9 } { 4 } } = 1  Round to the nearest tenth if necessary.

(Multiple Choice)
4.8/5
(37)

Identify Conics Without Rotating Axes - x29xy+3y214=0x ^ { 2 } - 9 x y + 3 y ^ { 2 } - 14 = 0

(Multiple Choice)
5.0/5
(40)

Find Parametric Equations for Functions -Circle: Center: (2,3)( 2,3 ) ; Radius: 2

(Multiple Choice)
4.9/5
(30)

Graph Hyperbolas Not Centered at the Origin - (y4)249(x4)29=1\frac { ( y - 4 ) ^ { 2 } } { 49 } - \frac { ( x - 4 ) ^ { 2 } } { 9 } = 1

(Multiple Choice)
4.8/5
(22)

Use the center, vertices, and asymptotes to graph the hyperbola. - (x+2)24(y1)2=4(x+2)^{2}-4(y-1)^{2}=4  Use the center, vertices, and asymptotes to graph the hyperbola. - (x+2)^{2}-4(y-1)^{2}=4

(Multiple Choice)
4.9/5
(40)

Graph Parabolas with Vertices Not at the Origin - (x1)2=12(y+2)( \mathrm { x } - 1 ) ^ { 2 } = - 12 ( \mathrm { y } + 2 )

(Multiple Choice)
4.9/5
(38)
Showing 181 - 200 of 228
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)