Exam 10: Conic Sections and Analytic Geometry

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use point plotting to graph the plane curve described by the given parametric equations. - x=2tanty=3sect:0t2πx=2 \tan t \cdot y=3 \sec t: 0 \leq t \leq 2 \pi  Use point plotting to graph the plane curve described by the given parametric equations. - x=2 \tan t \cdot y=3 \sec t: 0 \leq t \leq 2 \pi

(Multiple Choice)
4.7/5
(44)

Additional Concepts - x=2t,y=t2+t+2x = 2 t , y = t ^ { 2 } + t + 2  Additional Concepts - x = 2 t , y = t ^ { 2 } + t + 2

(Multiple Choice)
4.9/5
(35)

Identify Conics Without Rotating Axes - x2+12xy+36y24x3y+1=0x ^ { 2 } + 12 x y + 36 y ^ { 2 } - 4 x - 3 y + 1 = 0

(Multiple Choice)
4.9/5
(43)

Tech: Conic Sections in Polar Coordinates - r=31cos(θπ4)r = \frac { 3 } { 1 - \cos \left( \theta - \frac { \pi } { 4 } \right) }  Tech: Conic Sections in Polar Coordinates - r = \frac { 3 } { 1 - \cos \left( \theta - \frac { \pi } { 4 } \right) }

(Multiple Choice)
4.8/5
(39)

Write the appropriate rotation formulas so that in a rotated system the equation has no x'y'-term. - 4x2+5xy+4y28x+8y=04 x ^ { 2 } + 5 x y + 4 y ^ { 2 } - 8 x + 8 y = 0

(Multiple Choice)
4.9/5
(30)

Graph Hyperbolas Centered at the Origin - y=±x23y=\pm \sqrt{x^{2}-3}  Graph Hyperbolas Centered at the Origin - y=\pm \sqrt{x^{2}-3}

(Multiple Choice)
4.9/5
(35)

Eliminate the Parameter - x=2t1,y=t2+3;4t4\mathrm { x } = 2 \mathrm { t } - 1 , \mathrm { y } = \mathrm { t } ^ { 2 } + 3 ; - 4 \leq \mathrm { t } \leq 4

(Multiple Choice)
4.9/5
(28)

Conic Sections in Polar Coordinates 1 Define Conics in Terms of a Focus and a Directrix - r=313sinθ\mathrm { r } = \frac { 3 } { 1 - 3 \sin \theta }

(Multiple Choice)
4.8/5
(35)

Write Equations of Rotated Conics in Standard Form - 31x2+103xy+21y2144=031 x ^ { 2 } + 10 \sqrt { 3 } x y + 21 y ^ { 2 } - 144 = 0

(Multiple Choice)
4.9/5
(33)

Identify Conics Without Rotating Axes - 2x2+4xy+4y2+2x4y+2=02 x ^ { 2 } + 4 x y + 4 y ^ { 2 } + 2 x - 4 y + 2 = 0

(Multiple Choice)
5.0/5
(34)

Additional Concepts - x=(y10)26x = - ( y - 10 ) ^ { 2 } - 6

(Multiple Choice)
4.8/5
(35)

Convert the equation to the standard form for a hyperbola by completing the square on x and y. - x2y2+6x2y+7=0x ^ { 2 } - y ^ { 2 } + 6 x - 2 y + 7 = 0

(Multiple Choice)
4.8/5
(34)

Additional Concepts - y=x2+12x+35y = x ^ { 2 } + 12 x + 35

(Multiple Choice)
4.9/5
(40)

Convert the equation to the standard form for a parabola by completing the square on x or y as appropriate. - y2+6y5x+14=0y ^ { 2 } + 6 y - 5 x + 14 = 0

(Multiple Choice)
4.8/5
(33)

Find the standard form of the equation of the ellipse satisfying the given conditions. -Major axis horizontal with length 20 ; length of minor axis =12;= 12 ; center (0,0)( 0,0 )

(Multiple Choice)
4.8/5
(32)

Find Parametric Equations for Functions -The line segment starting at (6,3)( - 6 , - 3 ) with t=0t = 0 and ending at (21,9)( - 21 , - 9 ) with t=3t = 3

(Multiple Choice)
4.8/5
(30)

Additional Concepts - y2+6yx+5=0y ^ { 2 } + 6 y - x + 5 = 0

(Multiple Choice)
4.7/5
(25)

Graph the Polar Equations of Conics - r=155+10sinθr = \frac { 15 } { 5 + 10 \sin \theta } \quad Identify the directrix and vertices.  Graph the Polar Equations of Conics - r = \frac { 15 } { 5 + 10 \sin \theta } \quad  Identify the directrix and vertices.

(Multiple Choice)
4.8/5
(30)

Eliminate the Parameter -A circle: x=2+5cost,y=5+5sintx = 2 + 5 \cos t , y = 5 + 5 \sin t

(Multiple Choice)
4.8/5
(27)

Graph the Polar Equations of Conics - r=93sinθr = \frac { 9 } { 3 - \sin \theta } \quad Identify the directrix and vertices.  Graph the Polar Equations of Conics - r = \frac { 9 } { 3 - \sin \theta } \quad  Identify the directrix and vertices.

(Multiple Choice)
4.9/5
(26)
Showing 101 - 120 of 228
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)