Exam 10: Conic Sections and Analytic Geometry

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Rotation of Axes 1 Identify Conics Without Completing the Square - 3x2+4y2+2x+3y=03 x ^ { 2 } + 4 y ^ { 2 } + 2 x + 3 y = 0

(Multiple Choice)
4.9/5
(36)

Convert the equation to the standard form for an ellipse by completing the square on x and y. - 4x2+16y2+8x+96y+84=04 x ^ { 2 } + 16 y ^ { 2 } + 8 x + 96 y + 84 = 0

(Multiple Choice)
4.8/5
(33)

Use point plotting to graph the plane curve described by the given parametric equations. - x=5sint,y=5cost;0t2πx=5 \sin t, y=5 \cos t ; 0 \leq t \leq 2 \pi  Use point plotting to graph the plane curve described by the given parametric equations. - x=5 \sin t, y=5 \cos t ; 0 \leq t \leq 2 \pi

(Multiple Choice)
4.7/5
(41)

Graph Hyperbolas Centered at the Origin - 16x29y2=14416 x^{2}-9 y^{2}=144  Graph Hyperbolas Centered at the Origin - 16 x^{2}-9 y^{2}=144

(Multiple Choice)
4.9/5
(33)

Find the standard form of the equation of the ellipse satisfying the given conditions. -Endpoints of major axis: (1,3)( 1 , - 3 ) and (1,7)( 1,7 ) ; endpoints of minor axis: (3,2)( - 3,2 ) and (5,2)( 5,2 ) ;

(Multiple Choice)
4.9/5
(37)

Graph Ellipses Not Centered at the Origin - (x2)216+(y1)24=1\frac { ( x - 2 ) ^ { 2 } } { 16 } + \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1  Graph Ellipses Not Centered at the Origin - \frac { ( x - 2 ) ^ { 2 } } { 16 } + \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1

(Multiple Choice)
4.9/5
(31)

Tech: Rotation of Axes -Tech: Rotation of Axes -

(Multiple Choice)
4.9/5
(40)

Use the rotated system to graph the equation. - 3x223xy+y28x83y=03 x^{2}-2 \sqrt{3} x y+y^{2}-8 x-8 \sqrt{3} y=0  Use the rotated system to graph the equation. - 3 x^{2}-2 \sqrt{3} x y+y^{2}-8 x-8 \sqrt{3} y=0

(Multiple Choice)
4.8/5
(42)

Eliminate the Parameter - x=t,y=2t+4;0t4x = \sqrt { t } , y = 2 t + 4 ; 0 \leq t \leq 4

(Multiple Choice)
4.7/5
(41)

Match the equation to the graph. - y2=4xy ^ { 2 } = - 4 x

(Multiple Choice)
4.9/5
(33)

The Parabola 1 Graph Parabolas with Vertices at the Origin - y2=12xy ^ { 2 } = 12 x

(Multiple Choice)
4.8/5
(45)

Write Equations of Hyperbolas in Standard Form -Endpoints of transverse axis: (5,0),(5,0)( - 5,0 ) , ( 5,0 ) ; foci: (11,0),(11,0)( - 11,0 ) , ( - 11,0 )

(Multiple Choice)
4.7/5
(38)

Use point plotting to graph the plane curve described by the given parametric equations. - x=2t,y=t1;tx=2 t, y=|t-1| ;-\infty \leq t \leq \infty  Use point plotting to graph the plane curve described by the given parametric equations. - x=2 t, y=|t-1| ;-\infty \leq t \leq \infty

(Multiple Choice)
4.9/5
(36)

Find a set of parametric equations for the rectangular equation. - y=x43y = x ^ { 4 } - 3

(Multiple Choice)
4.9/5
(31)

Write the appropriate rotation formulas so that in a rotated system the equation has no x'y'-term. - 6x24xy+3y28x+8y=06 x ^ { 2 } - 4 x y + 3 y ^ { 2 } - 8 x + 8 y = 0

(Multiple Choice)
4.9/5
(40)

Tech: Rotation of Axes - 5x2+3xy+5y2=115 x^{2}+3 x y+5 y^{2}=11  Tech: Rotation of Axes - 5 x^{2}+3 x y+5 y^{2}=11

(Multiple Choice)
4.8/5
(28)

Graph the parabola with the given equation. - (x1)2=7(y2)( x - 1 ) ^ { 2 } = 7 ( y - 2 )  Graph the parabola with the given equation. - ( x - 1 ) ^ { 2 } = 7 ( y - 2 )

(Multiple Choice)
4.8/5
(37)

Tech: Parametric Equations -Cycloid: x=2(tsint),y=2(1cost),0t6πx = 2 ( t - \sin t ) , y = 2 ( 1 - \cos t ) , 0 \leq t \leq 6 \pi  Tech: Parametric Equations -Cycloid:  x = 2 ( t - \sin t ) , y = 2 ( 1 - \cos t ) , 0 \leq t \leq 6 \pi

(Multiple Choice)
4.9/5
(31)

Find the standard form of the equation of the ellipse satisfying the given conditions. -Foci: (3,0),(3,0);x( - 3,0 ) , ( 3,0 ) ; x -intercepts: 4- 4 and 4

(Multiple Choice)
4.8/5
(35)

The Parabola 1 Graph Parabolas with Vertices at the Origin - y2=24xy ^ { 2 } = - 24 x

(Multiple Choice)
4.8/5
(36)
Showing 121 - 140 of 228
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)