Exam 10: Conic Sections and Analytic Geometry

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

The Hyperbola 1 Locate a Hyperbola's Vertices and Foci - y=±x210y = \pm \sqrt { x ^ { 2 } - 10 }

(Multiple Choice)
4.8/5
(37)

Find Parametric Equations for Functions -Ellipse: Center: (5,5)( 5 , - 5 ) ; Vertices: 6 units above and below the center; Endpoints of Minor Axis: 4 units left and right of the center.

(Multiple Choice)
4.9/5
(38)

Convert the equation to the standard form for a parabola by completing the square on x or y as appropriate. - x2+2x7y+36=0x ^ { 2 } + 2 x - 7 y + 36 = 0

(Multiple Choice)
4.8/5
(41)

Find Parametric Equations for Functions -Hyperbola: Vertices: (6,0)( 6,0 ) ; Vertices: (6,0)( - 6,0 ) ; Foci: (10,0)( 10,0 ) and (10,0)( - 10,0 )

(Multiple Choice)
4.8/5
(37)

Write the appropriate rotation formulas so that in a rotated system the equation has no x'y'-term. - 14x224xy+7y2+30x40y45=014 x ^ { 2 } - 24 x y + 7 y ^ { 2 } + 30 x - 40 y - 45 = 0

(Multiple Choice)
4.9/5
(34)

Graph Parabolas with Vertices Not at the Origin - (y+4)2=8x( y + 4 ) ^ { 2 } = 8 x

(Multiple Choice)
4.9/5
(32)

Use point plotting to graph the plane curve described by the given parametric equations. -Use point plotting to graph the plane curve described by the given parametric equations. -

(Multiple Choice)
4.8/5
(30)

Write Equations of Rotated Conics in Standard Form - 17x212xy+8y268x+24y12=017 x ^ { 2 } - 12 x y + 8 y ^ { 2 } - 68 x + 24 y - 12 = 0

(Multiple Choice)
4.8/5
(31)

Use Rotation of Axes Formulas - 5x26xy+5y28=0;θ=455 x ^ { 2 } - 6 x y + 5 y ^ { 2 } - 8 = 0 ; \theta = 45 ^ { \circ }

(Multiple Choice)
4.8/5
(36)

Write Equations of Parabolas in Standard Form -Focus: (13,0)( 13,0 ) ; Directrix: x=13x = - 13

(Multiple Choice)
4.9/5
(33)

Eliminate the Parameter - x=2t,y=t+1;2t3x = 2 t , y = t + 1 ; - 2 \leq t \leq 3

(Multiple Choice)
4.8/5
(34)

Write Equations of Ellipses in Standard Form -Write Equations of Ellipses in Standard Form -

(Multiple Choice)
4.7/5
(39)

Write Equations of Hyperbolas in Standard Form -Foci: (0,9),(0,9)( 0 , - 9 ) , ( 0,9 ) ; vertices: (0,4),(0,4)( 0 , - 4 ) , ( 0,4 )

(Multiple Choice)
4.9/5
(34)

Graph Hyperbolas Not Centered at the Origin - (y+2)24(x+1)2=4( \mathrm { y } + 2 ) ^ { 2 } - 4 ( \mathrm { x } + 1 ) ^ { 2 } = 4

(Multiple Choice)
4.8/5
(36)

Conic Sections in Polar Coordinates 1 Define Conics in Terms of a Focus and a Directrix - r=42+2sinθr = \frac { 4 } { 2 + 2 \sin \theta }

(Multiple Choice)
4.9/5
(30)

Graph Hyperbolas Centered at the Origin - x29y225=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1  Graph Hyperbolas Centered at the Origin - \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1

(Multiple Choice)
4.7/5
(35)

The Hyperbola 1 Locate a Hyperbola's Vertices and Foci - y2100x281=1\frac { y ^ { 2 } } { 100 } - \frac { x ^ { 2 } } { 81 } = 1

(Multiple Choice)
4.9/5
(31)

Find the standard form of the equation of the ellipse satisfying the given conditions. -Foci: (0,3),(0,3)( 0 , - 3 ) , ( 0,3 ) ; vertices: (0,5),(0,5)( 0 , - 5 ) , ( 0,5 )

(Multiple Choice)
4.8/5
(31)

Conic Sections in Polar Coordinates 1 Define Conics in Terms of a Focus and a Directrix - r=933cosθr = \frac { 9 } { 3 - 3 \cos \theta }

(Multiple Choice)
4.9/5
(32)

Graph Ellipses Not Centered at the Origin - 36(x+3)2+16(y2)2=57636 ( x + 3 ) ^ { 2 } + 16 ( y - 2 ) ^ { 2 } = 576

(Multiple Choice)
4.8/5
(33)
Showing 201 - 220 of 228
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)