Exam 14: Introduction to Multiple

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

SCENARIO 14-15 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), mean teacher salary in thousands of dollars (Salaries), and instructional spending per pupil in thousands of dollars (Spending) of 47 schools in the state. Following is the multiple regression output with Y=%Y = \% Passing as the dependent variable, X1=X _ { 1 } = Salaries and X2=X _ { 2 } = Spending: Regression Statistics Multiple R 0.4276 R Square 0.1828 Adjusted R Square 0.1457 Standard Error 5.7351 Observations 47 ANOVA  SCENARIO 14-15 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), mean teacher salary in thousands of dollars (Salaries), and instructional spending per pupil in thousands of dollars (Spending) of 47 schools in the state. Following is the multiple regression output with  Y = \%  Passing as the dependent variable,  X _ { 1 } =  Salaries and  X _ { 2 } =  Spending:   \begin{array}{lr} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.4276 \\ \text { R Square } & 0.1828 \\ \text { Adjusted R Square } & 0.1457 \\ \text { Standard Error } & 5.7351 \\ \text { Observations } & 47 \\ \hline \end{array}    ANOVA     \begin{array}{lrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \rho \text {-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & -72.9916 & 45.9106 & -1.5899 & 0.1190 & -165.5184 & 19.5352 \\ \text { Salary } & 2.7939 & 0.8974 & 3.1133 & 0.0032 & 0.9853 & 4.6025 \\ \text { Spending } & 0.3742 & 0.9782 & 0.3825 & 0.7039 & -1.5972 & 2.3455 \\ \hline \end{array}   -Referring to Scenario 14-15, what are the numerator and denominator degrees of freedom, respectively, for the test statistic to determine whether there is a significant relationship between percentage of students passing the proficiency test and the entire set of explanatory variables? Coefficients Standard Error t Stat \rho -value Lower 95\% Upper 95\% Intercept -72.9916 45.9106 -1.5899 0.1190 -165.5184 19.5352 Salary 2.7939 0.8974 3.1133 0.0032 0.9853 4.6025 Spending 0.3742 0.9782 0.3825 0.7039 -1.5972 2.3455 -Referring to Scenario 14-15, what are the numerator and denominator degrees of freedom, respectively, for the test statistic to determine whether there is a significant relationship between percentage of students passing the proficiency test and the entire set of explanatory variables?

(Short Answer)
4.9/5
(31)

SCENARIO 14-15 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), mean teacher salary in thousands of dollars (Salaries), and instructional spending per pupil in thousands of dollars (Spending) of 47 schools in the state. Following is the multiple regression output with Y=%Y = \% Passing as the dependent variable, X1=X _ { 1 } = Salaries and X2=X _ { 2 } = Spending: Regression Statistics Multiple R 0.4276 R Square 0.1828 Adjusted R Square 0.1457 Standard Error 5.7351 Observations 47 ANOVA  SCENARIO 14-15 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), mean teacher salary in thousands of dollars (Salaries), and instructional spending per pupil in thousands of dollars (Spending) of 47 schools in the state. Following is the multiple regression output with  Y = \%  Passing as the dependent variable,  X _ { 1 } =  Salaries and  X _ { 2 } =  Spending:   \begin{array}{lr} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.4276 \\ \text { R Square } & 0.1828 \\ \text { Adjusted R Square } & 0.1457 \\ \text { Standard Error } & 5.7351 \\ \text { Observations } & 47 \\ \hline \end{array}    ANOVA     \begin{array}{lrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \rho \text {-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & -72.9916 & 45.9106 & -1.5899 & 0.1190 & -165.5184 & 19.5352 \\ \text { Salary } & 2.7939 & 0.8974 & 3.1133 & 0.0032 & 0.9853 & 4.6025 \\ \text { Spending } & 0.3742 & 0.9782 & 0.3825 & 0.7039 & -1.5972 & 2.3455 \\ \hline \end{array}   -Referring to Scenario 14-15, there is sufficient evidence that the percentage of students passing the proficiency test depends on at least one of the explanatory variables at a 5% level of significance. Coefficients Standard Error t Stat \rho -value Lower 95\% Upper 95\% Intercept -72.9916 45.9106 -1.5899 0.1190 -165.5184 19.5352 Salary 2.7939 0.8974 3.1133 0.0032 0.9853 4.6025 Spending 0.3742 0.9782 0.3825 0.7039 -1.5972 2.3455 -Referring to Scenario 14-15, there is sufficient evidence that the percentage of students passing the proficiency test depends on at least one of the explanatory variables at a 5% level of significance.

(True/False)
4.8/5
(27)

SCENARIO 14-8 A financial analyst wanted to examine the relationship between salary (in $1,000 \$ 1,000 ) and 2 variables: age (X1=Age) \left(X_{1}=\mathrm{Age}\right) and experience in the field (X2= \left(X_{2}=\right. Exper). He took a sample of 20 employees and obtained the following Microsoft Excel output: Regression Statistics Multiple R 0.8535 R Square 0.7284 Adjusted R Square 0.6964 Standard Error 10.5630 Observations 20  ANOVA \text { ANOVA }  SCENARIO 14-8 A financial analyst wanted to examine the relationship between salary (in   \$ 1,000   ) and 2 variables: age   \left(X_{1}=\mathrm{Age}\right)   and experience in the field   \left(X_{2}=\right.   Exper). He took a sample of 20 employees and obtained the following Microsoft Excel output:   \begin{array}{lr} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8535 \\ \text { R Square } & 0.7284 \\ \text { Adjusted R Square } & 0.6964 \\ \text { Standard Error } & 10.5630 \\ \text { Observations } & 20 \\ \hline \end{array}    \text { ANOVA }      \begin{array}{lrrrrrr}  & \text { Coefficients } & \text { Standard Error } & {\text { t Stat }} & \text { P-value } & \text { Lower 95\% } &{\text { O5\% }} \\ \hline \text { Intercept } & 1.5740 & 9.2723 & 0.1698 & 0.8672 & -17.9888 & 21.1368 \\ \text { Age } & 1.3045 & 0.1956 & 6.6678 & 0.0000 & 0.8917 & 1.7173 \\ \text { Exper } & -0.1478 & 0.1944 & -0.7604 & 0.4574 & -0.5580 & 0.2624 \\ \hline \end{array}   Also the sum of squares due to the regression for the model that includes only Age is 5022.0654 while the sum of squares due to the regression for the model that includes only Exper is 125.9848. -Referring to Scenario 14-8, the analyst wants to use an F-test to test  H _ { 0 } : \beta _ { 1 } = \beta _ { 2 } = 0  . The appropriate alternative hypothesis is ________. Coefficients Standard Error t Stat P-value Lower 95\% O5\% Intercept 1.5740 9.2723 0.1698 0.8672 -17.9888 21.1368 Age 1.3045 0.1956 6.6678 0.0000 0.8917 1.7173 Exper -0.1478 0.1944 -0.7604 0.4574 -0.5580 0.2624 Also the sum of squares due to the regression for the model that includes only Age is 5022.0654 while the sum of squares due to the regression for the model that includes only Exper is 125.9848. -Referring to Scenario 14-8, the analyst wants to use an F-test to test H0:β1=β2=0H _ { 0 } : \beta _ { 1 } = \beta _ { 2 } = 0 . The appropriate alternative hypothesis is ________.

(Essay)
4.8/5
(36)

SCENARIO 14-17 Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age) and a dummy variable for management position (Manager: 1 = yes, 0 = no). The results of the regression analysis are given below: \ Regression Statistics Multiple R 0.6391 R Square 0.4085 Adjusted R Square 0.3765 Standard Error 18.8929 Observations 40  ANOVA \text { ANOVA }  SCENARIO 14-17 Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age) and a dummy variable for management position (Manager: 1 = yes, 0 = no). The results of the regression analysis are given below:  \begin{array}{l} \hline \ { \text { Regression Statistics } } \\ \hline \text { Multiple R } & 0.6391 \\ \text { R Square } & 0.4085 \\ \text { Adjusted R Square } & 0.3765 \\ \text { Standard Error } & 18.8929 \\ \text { Observations } & 40 \\ \hline \end{array}    \text { ANOVA }       \begin{array} { l r r r r }  \hline & \text { Coefficients } & \text { Standard Error } & { t \text { Stat } } &  { \text { P-value } } \\ \hline \text { Intercept } & - 0.2143 & 11.5796 & - 0.0185 & 0.9853 \\ \text { Age } & 1.4448 & 0.3160 & 4.5717 & 0.0000 \\ \text { Manager } & - 22.5761 & 11.3488 & - 1.9893 & 0.0541 \\ \hline  \end{array}  -Referring to Scenario 14-17, what are the lower and upper limits of the 95% confidence interval estimate for the difference in the mean number of weeks a worker is unemployed due to a layoff between a worker who is in a management position and one who is not after taking into consideration the effect of all the other independent variables? Coefficients Standard Error t Stat P-value Intercept -0.2143 11.5796 -0.0185 0.9853 Age 1.4448 0.3160 4.5717 0.0000 Manager -22.5761 11.3488 -1.9893 0.0541 -Referring to Scenario 14-17, what are the lower and upper limits of the 95% confidence interval estimate for the difference in the mean number of weeks a worker is unemployed due to a layoff between a worker who is in a management position and one who is not after taking into consideration the effect of all the other independent variables?

(Short Answer)
4.8/5
(34)

SCENARIO 14-16 What are the factors that determine the acceleration time (in sec.) from 0 to 60 miles per hour of a car? Data on the following variables for 30 different vehicle models were collected: YY (Accel Time): Acceleration time in sec. XIX _ { I } (Engine Size): c.c. X2X _ { 2 } (Sedan): 1 if the vehicle model is a sedan and 0 otherwise The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below. Regression Statistics Multiple R 0.6096 R Square 0.3716 Adjusted R Square 0.3251 Standard Error 1.4629 Observations 30 ANOVA  SCENARIO 14-16 What are the factors that determine the acceleration time (in sec.) from 0 to 60 miles per hour of a car? Data on the following variables for 30 different vehicle models were collected:  Y  (Accel Time): Acceleration time in sec.  X _ { I }  (Engine Size): c.c.  X _ { 2 }  (Sedan): 1 if the vehicle model is a sedan and 0 otherwise  The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below.   \begin{array}{lr} \hline{\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.6096 \\ \text { R Square } & 0.3716 \\ \text { Adjusted R Square } & 0.3251 \\ \text { Standard Error } & 1.4629 \\ \text { Observations } & 30 \\ \hline \end{array}   ANOVA      \begin{array}{lrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & 7.1052 & 0.6574 & 10.8086 & 0.0000 & 5.7564 & 8.4540 \\ \text { Engine Size } & -0.0005 & 0.0001 & -3.6477 & 0.0011 & -0.0008 & -0.0002 \\ \text { Sedan } & 0.7264 & 0.5564 & 1.3056 & 0.2027 & -0.4152 & 1.8681 \\ \hline \end{array}      -Referring to Scenario 14-16, which of the following assumptions is most likely violated based on the residual plot of the residuals versus predicted Y? Coefficients Standard Error t Stat P-value Lower 95\% Upper 95\% Intercept 7.1052 0.6574 10.8086 0.0000 5.7564 8.4540 Engine Size -0.0005 0.0001 -3.6477 0.0011 -0.0008 -0.0002 Sedan 0.7264 0.5564 1.3056 0.2027 -0.4152 1.8681  SCENARIO 14-16 What are the factors that determine the acceleration time (in sec.) from 0 to 60 miles per hour of a car? Data on the following variables for 30 different vehicle models were collected:  Y  (Accel Time): Acceleration time in sec.  X _ { I }  (Engine Size): c.c.  X _ { 2 }  (Sedan): 1 if the vehicle model is a sedan and 0 otherwise  The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below.   \begin{array}{lr} \hline{\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.6096 \\ \text { R Square } & 0.3716 \\ \text { Adjusted R Square } & 0.3251 \\ \text { Standard Error } & 1.4629 \\ \text { Observations } & 30 \\ \hline \end{array}   ANOVA      \begin{array}{lrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & 7.1052 & 0.6574 & 10.8086 & 0.0000 & 5.7564 & 8.4540 \\ \text { Engine Size } & -0.0005 & 0.0001 & -3.6477 & 0.0011 & -0.0008 & -0.0002 \\ \text { Sedan } & 0.7264 & 0.5564 & 1.3056 & 0.2027 & -0.4152 & 1.8681 \\ \hline \end{array}      -Referring to Scenario 14-16, which of the following assumptions is most likely violated based on the residual plot of the residuals versus predicted Y? -Referring to Scenario 14-16, which of the following assumptions is most likely violated based on the residual plot of the residuals versus predicted Y?

(Multiple Choice)
5.0/5
(34)

SCENARIO 14-20-A You are the CEO of a dairy company. You are planning to expand milk production by purchasing additional cows, lands and hiring more workers. From the existing 50 farms owned by the company, you have collected data on total milk production (in liters), the number of milking cows, land size (in acres) and the number of laborers. The data are shown below and also available in the Excel file Scenario14-20-DataA.XLSX. S  SCENARIO 14-20-A You are the CEO of a dairy company. You are planning to expand milk production by purchasing additional cows, lands and hiring more workers. From the existing 50 farms owned by the company, you have collected data on total milk production (in liters), the number of milking cows, land size (in acres) and the number of laborers. The data are shown below and also available in the Excel file Scenario14-20-DataA.XLSX. S   You believe that the number of milking cows  \left( X _ { 1 } \right) , land size  \left( X _ { 2 } \right)  and the number of laborers  \left( X _ { 3 } \right)  are the best predictors for total milk production on any given farm. -Referring to Scenario 14-20-A, there is sufficient evidence that total milk production depends on at least one of the explanatory variables at a 1% level of significance when testing whether there is a significant relationship between total milk production and the entire set of explanatory variables. You believe that the number of milking cows (X1)\left( X _ { 1 } \right) , land size (X2)\left( X _ { 2 } \right) and the number of laborers (X3)\left( X _ { 3 } \right) are the best predictors for total milk production on any given farm. -Referring to Scenario 14-20-A, there is sufficient evidence that total milk production depends on at least one of the explanatory variables at a 1% level of significance when testing whether there is a significant relationship between total milk production and the entire set of explanatory variables.

(True/False)
4.9/5
(31)

SCENARIO 14-15 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), mean teacher salary in thousands of dollars (Salaries), and instructional spending per pupil in thousands of dollars (Spending) of 47 schools in the state. Following is the multiple regression output with Y=%Y = \% Passing as the dependent variable, X1=X _ { 1 } = Salaries and X2=X _ { 2 } = Spending: Regression Statistics Multiple R 0.4276 R Square 0.1828 Adjusted R Square 0.1457 Standard Error 5.7351 Observations 47 ANOVA  SCENARIO 14-15 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), mean teacher salary in thousands of dollars (Salaries), and instructional spending per pupil in thousands of dollars (Spending) of 47 schools in the state. Following is the multiple regression output with  Y = \%  Passing as the dependent variable,  X _ { 1 } =  Salaries and  X _ { 2 } =  Spending:   \begin{array}{lr} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.4276 \\ \text { R Square } & 0.1828 \\ \text { Adjusted R Square } & 0.1457 \\ \text { Standard Error } & 5.7351 \\ \text { Observations } & 47 \\ \hline \end{array}    ANOVA     \begin{array}{lrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \rho \text {-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & -72.9916 & 45.9106 & -1.5899 & 0.1190 & -165.5184 & 19.5352 \\ \text { Salary } & 2.7939 & 0.8974 & 3.1133 & 0.0032 & 0.9853 & 4.6025 \\ \text { Spending } & 0.3742 & 0.9782 & 0.3825 & 0.7039 & -1.5972 & 2.3455 \\ \hline \end{array}   -Referring to Scenario 14-15, you can conclude that mean teacher salary has no impact on the mean percentage of students passing the proficiency test, taking into account the effect of instructional spending per pupil, at a 5% level of significance using the confidence interval estimate for  \beta _ { 1 }  . Coefficients Standard Error t Stat \rho -value Lower 95\% Upper 95\% Intercept -72.9916 45.9106 -1.5899 0.1190 -165.5184 19.5352 Salary 2.7939 0.8974 3.1133 0.0032 0.9853 4.6025 Spending 0.3742 0.9782 0.3825 0.7039 -1.5972 2.3455 -Referring to Scenario 14-15, you can conclude that mean teacher salary has no impact on the mean percentage of students passing the proficiency test, taking into account the effect of instructional spending per pupil, at a 5% level of significance using the confidence interval estimate for β1\beta _ { 1 } .

(True/False)
4.8/5
(27)

SCENARIO 14-15 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), mean teacher salary in thousands of dollars (Salaries), and instructional spending per pupil in thousands of dollars (Spending) of 47 schools in the state. Following is the multiple regression output with Y=%Y = \% Passing as the dependent variable, X1=X _ { 1 } = Salaries and X2=X _ { 2 } = Spending: Regression Statistics Multiple R 0.4276 R Square 0.1828 Adjusted R Square 0.1457 Standard Error 5.7351 Observations 47 ANOVA  SCENARIO 14-15 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), mean teacher salary in thousands of dollars (Salaries), and instructional spending per pupil in thousands of dollars (Spending) of 47 schools in the state. Following is the multiple regression output with  Y = \%  Passing as the dependent variable,  X _ { 1 } =  Salaries and  X _ { 2 } =  Spending:   \begin{array}{lr} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.4276 \\ \text { R Square } & 0.1828 \\ \text { Adjusted R Square } & 0.1457 \\ \text { Standard Error } & 5.7351 \\ \text { Observations } & 47 \\ \hline \end{array}    ANOVA     \begin{array}{lrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \rho \text {-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & -72.9916 & 45.9106 & -1.5899 & 0.1190 & -165.5184 & 19.5352 \\ \text { Salary } & 2.7939 & 0.8974 & 3.1133 & 0.0032 & 0.9853 & 4.6025 \\ \text { Spending } & 0.3742 & 0.9782 & 0.3825 & 0.7039 & -1.5972 & 2.3455 \\ \hline \end{array}   -Referring to Scenario 14-15, there is sufficient evidence that mean teacher salary has an effect on percentage of students passing the proficiency test while holding constant the effect of instructional spending per pupil at a 5% level of significance. Coefficients Standard Error t Stat \rho -value Lower 95\% Upper 95\% Intercept -72.9916 45.9106 -1.5899 0.1190 -165.5184 19.5352 Salary 2.7939 0.8974 3.1133 0.0032 0.9853 4.6025 Spending 0.3742 0.9782 0.3825 0.7039 -1.5972 2.3455 -Referring to Scenario 14-15, there is sufficient evidence that mean teacher salary has an effect on percentage of students passing the proficiency test while holding constant the effect of instructional spending per pupil at a 5% level of significance.

(True/False)
4.8/5
(42)

SCENARIO 14-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size). House size is measured in hundreds of square feet and income is measured in thousands of dollars. The builder randomly selected 50 families and ran the multiple regression. Partial Microsoft Excel output is provided below: SCENARIO 14-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size). House size is measured in hundreds of square feet and income is measured in thousands of dollars. The builder randomly selected 50 families and ran the multiple regression. Partial Microsoft Excel output is provided below:   -Referring to Scenario 14-4, what are the residual degrees of freedom that are missing from the output? -Referring to Scenario 14-4, what are the residual degrees of freedom that are missing from the output?

(Multiple Choice)
4.9/5
(26)

SCENARIO 14-16 What are the factors that determine the acceleration time (in sec.) from 0 to 60 miles per hour of a car? Data on the following variables for 30 different vehicle models were collected: YY (Accel Time): Acceleration time in sec. XIX _ { I } (Engine Size): c.c. X2X _ { 2 } (Sedan): 1 if the vehicle model is a sedan and 0 otherwise The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below. Regression Statistics Multiple R 0.6096 R Square 0.3716 Adjusted R Square 0.3251 Standard Error 1.4629 Observations 30 ANOVA  SCENARIO 14-16 What are the factors that determine the acceleration time (in sec.) from 0 to 60 miles per hour of a car? Data on the following variables for 30 different vehicle models were collected:  Y  (Accel Time): Acceleration time in sec.  X _ { I }  (Engine Size): c.c.  X _ { 2 }  (Sedan): 1 if the vehicle model is a sedan and 0 otherwise  The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below.   \begin{array}{lr} \hline{\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.6096 \\ \text { R Square } & 0.3716 \\ \text { Adjusted R Square } & 0.3251 \\ \text { Standard Error } & 1.4629 \\ \text { Observations } & 30 \\ \hline \end{array}   ANOVA      \begin{array}{lrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & 7.1052 & 0.6574 & 10.8086 & 0.0000 & 5.7564 & 8.4540 \\ \text { Engine Size } & -0.0005 & 0.0001 & -3.6477 & 0.0011 & -0.0008 & -0.0002 \\ \text { Sedan } & 0.7264 & 0.5564 & 1.3056 & 0.2027 & -0.4152 & 1.8681 \\ \hline \end{array}      -Referring to Scenario 14-16, ________ of the variation in Accel Time can be explained by engine size while controlling for the other independent variable. Coefficients Standard Error t Stat P-value Lower 95\% Upper 95\% Intercept 7.1052 0.6574 10.8086 0.0000 5.7564 8.4540 Engine Size -0.0005 0.0001 -3.6477 0.0011 -0.0008 -0.0002 Sedan 0.7264 0.5564 1.3056 0.2027 -0.4152 1.8681  SCENARIO 14-16 What are the factors that determine the acceleration time (in sec.) from 0 to 60 miles per hour of a car? Data on the following variables for 30 different vehicle models were collected:  Y  (Accel Time): Acceleration time in sec.  X _ { I }  (Engine Size): c.c.  X _ { 2 }  (Sedan): 1 if the vehicle model is a sedan and 0 otherwise  The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below.   \begin{array}{lr} \hline{\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.6096 \\ \text { R Square } & 0.3716 \\ \text { Adjusted R Square } & 0.3251 \\ \text { Standard Error } & 1.4629 \\ \text { Observations } & 30 \\ \hline \end{array}   ANOVA      \begin{array}{lrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & 7.1052 & 0.6574 & 10.8086 & 0.0000 & 5.7564 & 8.4540 \\ \text { Engine Size } & -0.0005 & 0.0001 & -3.6477 & 0.0011 & -0.0008 & -0.0002 \\ \text { Sedan } & 0.7264 & 0.5564 & 1.3056 & 0.2027 & -0.4152 & 1.8681 \\ \hline \end{array}      -Referring to Scenario 14-16, ________ of the variation in Accel Time can be explained by engine size while controlling for the other independent variable. -Referring to Scenario 14-16, ________ of the variation in Accel Time can be explained by engine size while controlling for the other independent variable.

(Short Answer)
4.8/5
(40)

SCENARIO 14-16 What are the factors that determine the acceleration time (in sec.) from 0 to 60 miles per hour of a car? Data on the following variables for 30 different vehicle models were collected: YY (Accel Time): Acceleration time in sec. XIX _ { I } (Engine Size): c.c. X2X _ { 2 } (Sedan): 1 if the vehicle model is a sedan and 0 otherwise The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below. Regression Statistics Multiple R 0.6096 R Square 0.3716 Adjusted R Square 0.3251 Standard Error 1.4629 Observations 30 ANOVA  SCENARIO 14-16 What are the factors that determine the acceleration time (in sec.) from 0 to 60 miles per hour of a car? Data on the following variables for 30 different vehicle models were collected:  Y  (Accel Time): Acceleration time in sec.  X _ { I }  (Engine Size): c.c.  X _ { 2 }  (Sedan): 1 if the vehicle model is a sedan and 0 otherwise  The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below.   \begin{array}{lr} \hline{\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.6096 \\ \text { R Square } & 0.3716 \\ \text { Adjusted R Square } & 0.3251 \\ \text { Standard Error } & 1.4629 \\ \text { Observations } & 30 \\ \hline \end{array}   ANOVA      \begin{array}{lrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & 7.1052 & 0.6574 & 10.8086 & 0.0000 & 5.7564 & 8.4540 \\ \text { Engine Size } & -0.0005 & 0.0001 & -3.6477 & 0.0011 & -0.0008 & -0.0002 \\ \text { Sedan } & 0.7264 & 0.5564 & 1.3056 & 0.2027 & -0.4152 & 1.8681 \\ \hline \end{array}      -Referring to Scenario 14-16, ________ of the variation in Accel Time can be explained by the two independent variables. Coefficients Standard Error t Stat P-value Lower 95\% Upper 95\% Intercept 7.1052 0.6574 10.8086 0.0000 5.7564 8.4540 Engine Size -0.0005 0.0001 -3.6477 0.0011 -0.0008 -0.0002 Sedan 0.7264 0.5564 1.3056 0.2027 -0.4152 1.8681  SCENARIO 14-16 What are the factors that determine the acceleration time (in sec.) from 0 to 60 miles per hour of a car? Data on the following variables for 30 different vehicle models were collected:  Y  (Accel Time): Acceleration time in sec.  X _ { I }  (Engine Size): c.c.  X _ { 2 }  (Sedan): 1 if the vehicle model is a sedan and 0 otherwise  The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below.   \begin{array}{lr} \hline{\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.6096 \\ \text { R Square } & 0.3716 \\ \text { Adjusted R Square } & 0.3251 \\ \text { Standard Error } & 1.4629 \\ \text { Observations } & 30 \\ \hline \end{array}   ANOVA      \begin{array}{lrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & 7.1052 & 0.6574 & 10.8086 & 0.0000 & 5.7564 & 8.4540 \\ \text { Engine Size } & -0.0005 & 0.0001 & -3.6477 & 0.0011 & -0.0008 & -0.0002 \\ \text { Sedan } & 0.7264 & 0.5564 & 1.3056 & 0.2027 & -0.4152 & 1.8681 \\ \hline \end{array}      -Referring to Scenario 14-16, ________ of the variation in Accel Time can be explained by the two independent variables. -Referring to Scenario 14-16, ________ of the variation in Accel Time can be explained by the two independent variables.

(Short Answer)
4.8/5
(40)

SCENARIO 14-17 Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age) and a dummy variable for management position (Manager: 1 = yes, 0 = no). The results of the regression analysis are given below: \ Regression Statistics Multiple R 0.6391 R Square 0.4085 Adjusted R Square 0.3765 Standard Error 18.8929 Observations 40  ANOVA \text { ANOVA }  SCENARIO 14-17 Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age) and a dummy variable for management position (Manager: 1 = yes, 0 = no). The results of the regression analysis are given below:  \begin{array}{l} \hline \ { \text { Regression Statistics } } \\ \hline \text { Multiple R } & 0.6391 \\ \text { R Square } & 0.4085 \\ \text { Adjusted R Square } & 0.3765 \\ \text { Standard Error } & 18.8929 \\ \text { Observations } & 40 \\ \hline \end{array}    \text { ANOVA }       \begin{array} { l r r r r }  \hline & \text { Coefficients } & \text { Standard Error } & { t \text { Stat } } &  { \text { P-value } } \\ \hline \text { Intercept } & - 0.2143 & 11.5796 & - 0.0185 & 0.9853 \\ \text { Age } & 1.4448 & 0.3160 & 4.5717 & 0.0000 \\ \text { Manager } & - 22.5761 & 11.3488 & - 1.9893 & 0.0541 \\ \hline  \end{array}  -Referring to Scenario 14-17, which of the following is the correct null hypothesis to determine whether there is a significant relationship between the number of weeks a worker is unemployed Due to a layoff and the entire set of explanatory variables? a)  H _ { 0 } : \beta _ { 0 } = \beta _ { 1 } = \beta _ { 2 } = 0  b)  H _ { 0 } : \beta _ { 1 } = \beta _ { 2 } = 0  c)  H _ { 0 } : \beta _ { 0 } = \beta _ { 1 } = \beta _ { 2 }  d)  H _ { 0 } : \beta _ { 1 } = \beta _ { 2 } Coefficients Standard Error t Stat P-value Intercept -0.2143 11.5796 -0.0185 0.9853 Age 1.4448 0.3160 4.5717 0.0000 Manager -22.5761 11.3488 -1.9893 0.0541 -Referring to Scenario 14-17, which of the following is the correct null hypothesis to determine whether there is a significant relationship between the number of weeks a worker is unemployed Due to a layoff and the entire set of explanatory variables? a) H0:β0=β1=β2=0H _ { 0 } : \beta _ { 0 } = \beta _ { 1 } = \beta _ { 2 } = 0 b) H0:β1=β2=0H _ { 0 } : \beta _ { 1 } = \beta _ { 2 } = 0 c) H0:β0=β1=β2H _ { 0 } : \beta _ { 0 } = \beta _ { 1 } = \beta _ { 2 } d) H0:β1=β2H _ { 0 } : \beta _ { 1 } = \beta _ { 2 }

(Short Answer)
4.9/5
(48)

SCENARIO 14-19 The marketing manager for a nationally franchised lawn service company would like to study the characteristics that differentiate home owners who do and do not have a lawn service. A random sample of 30 home owners located in a suburban area near a large city was selected; 11 did not have a lawn service (code 0) and 19 had a lawn service (code 1). Additional information available concerning these 30 home owners includes family income (Income, in thousands of dollars) and lawn size (Lawn Size, in thousands of square feet). The PHStat output is given below: Binary Logistic Regression Predictor Coefficients SE Coef Z p -Value Intercept -7.8562 3.8224 -2.0553 0.0398 Income 0.0304 0.0133 2.2897 0.0220 Lawn Size 1.2804 0.6971 1.8368 0.0662 Deviance 25.3089 -Referring to Scenario 14-19, which of the following is the correct interpretation for the Lawn Size slope coefficient?

(Multiple Choice)
4.8/5
(29)

SCENARIO 14-17 Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age) and a dummy variable for management position (Manager: 1 = yes, 0 = no). The results of the regression analysis are given below: \ Regression Statistics Multiple R 0.6391 R Square 0.4085 Adjusted R Square 0.3765 Standard Error 18.8929 Observations 40  ANOVA \text { ANOVA }  SCENARIO 14-17 Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age) and a dummy variable for management position (Manager: 1 = yes, 0 = no). The results of the regression analysis are given below:  \begin{array}{l} \hline \ { \text { Regression Statistics } } \\ \hline \text { Multiple R } & 0.6391 \\ \text { R Square } & 0.4085 \\ \text { Adjusted R Square } & 0.3765 \\ \text { Standard Error } & 18.8929 \\ \text { Observations } & 40 \\ \hline \end{array}    \text { ANOVA }       \begin{array} { l r r r r }  \hline & \text { Coefficients } & \text { Standard Error } & { t \text { Stat } } &  { \text { P-value } } \\ \hline \text { Intercept } & - 0.2143 & 11.5796 & - 0.0185 & 0.9853 \\ \text { Age } & 1.4448 & 0.3160 & 4.5717 & 0.0000 \\ \text { Manager } & - 22.5761 & 11.3488 & - 1.9893 & 0.0541 \\ \hline  \end{array}  -Referring to Scenario 14-17, which of the following is a correct statement? Coefficients Standard Error t Stat P-value Intercept -0.2143 11.5796 -0.0185 0.9853 Age 1.4448 0.3160 4.5717 0.0000 Manager -22.5761 11.3488 -1.9893 0.0541 -Referring to Scenario 14-17, which of the following is a correct statement?

(Multiple Choice)
4.9/5
(36)

SCENARIO 14-16 What are the factors that determine the acceleration time (in sec.) from 0 to 60 miles per hour of a car? Data on the following variables for 30 different vehicle models were collected: YY (Accel Time): Acceleration time in sec. XIX _ { I } (Engine Size): c.c. X2X _ { 2 } (Sedan): 1 if the vehicle model is a sedan and 0 otherwise The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below. Regression Statistics Multiple R 0.6096 R Square 0.3716 Adjusted R Square 0.3251 Standard Error 1.4629 Observations 30 ANOVA  SCENARIO 14-16 What are the factors that determine the acceleration time (in sec.) from 0 to 60 miles per hour of a car? Data on the following variables for 30 different vehicle models were collected:  Y  (Accel Time): Acceleration time in sec.  X _ { I }  (Engine Size): c.c.  X _ { 2 }  (Sedan): 1 if the vehicle model is a sedan and 0 otherwise  The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below.   \begin{array}{lr} \hline{\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.6096 \\ \text { R Square } & 0.3716 \\ \text { Adjusted R Square } & 0.3251 \\ \text { Standard Error } & 1.4629 \\ \text { Observations } & 30 \\ \hline \end{array}   ANOVA      \begin{array}{lrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & 7.1052 & 0.6574 & 10.8086 & 0.0000 & 5.7564 & 8.4540 \\ \text { Engine Size } & -0.0005 & 0.0001 & -3.6477 & 0.0011 & -0.0008 & -0.0002 \\ \text { Sedan } & 0.7264 & 0.5564 & 1.3056 & 0.2027 & -0.4152 & 1.8681 \\ \hline \end{array}      -Referring to Scenario 14-16, what is the value of the test statistic to determine whether engine size makes a significant contribution to the regression model in the presence of the other independent variable at a 5% level of significance? Coefficients Standard Error t Stat P-value Lower 95\% Upper 95\% Intercept 7.1052 0.6574 10.8086 0.0000 5.7564 8.4540 Engine Size -0.0005 0.0001 -3.6477 0.0011 -0.0008 -0.0002 Sedan 0.7264 0.5564 1.3056 0.2027 -0.4152 1.8681  SCENARIO 14-16 What are the factors that determine the acceleration time (in sec.) from 0 to 60 miles per hour of a car? Data on the following variables for 30 different vehicle models were collected:  Y  (Accel Time): Acceleration time in sec.  X _ { I }  (Engine Size): c.c.  X _ { 2 }  (Sedan): 1 if the vehicle model is a sedan and 0 otherwise  The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below.   \begin{array}{lr} \hline{\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.6096 \\ \text { R Square } & 0.3716 \\ \text { Adjusted R Square } & 0.3251 \\ \text { Standard Error } & 1.4629 \\ \text { Observations } & 30 \\ \hline \end{array}   ANOVA      \begin{array}{lrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & 7.1052 & 0.6574 & 10.8086 & 0.0000 & 5.7564 & 8.4540 \\ \text { Engine Size } & -0.0005 & 0.0001 & -3.6477 & 0.0011 & -0.0008 & -0.0002 \\ \text { Sedan } & 0.7264 & 0.5564 & 1.3056 & 0.2027 & -0.4152 & 1.8681 \\ \hline \end{array}      -Referring to Scenario 14-16, what is the value of the test statistic to determine whether engine size makes a significant contribution to the regression model in the presence of the other independent variable at a 5% level of significance? -Referring to Scenario 14-16, what is the value of the test statistic to determine whether engine size makes a significant contribution to the regression model in the presence of the other independent variable at a 5% level of significance?

(Short Answer)
4.9/5
(34)

SCENARIO 14-17 Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age) and a dummy variable for management position (Manager: 1 = yes, 0 = no). The results of the regression analysis are given below: \ Regression Statistics Multiple R 0.6391 R Square 0.4085 Adjusted R Square 0.3765 Standard Error 18.8929 Observations 40  ANOVA \text { ANOVA }  SCENARIO 14-17 Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age) and a dummy variable for management position (Manager: 1 = yes, 0 = no). The results of the regression analysis are given below:  \begin{array}{l} \hline \ { \text { Regression Statistics } } \\ \hline \text { Multiple R } & 0.6391 \\ \text { R Square } & 0.4085 \\ \text { Adjusted R Square } & 0.3765 \\ \text { Standard Error } & 18.8929 \\ \text { Observations } & 40 \\ \hline \end{array}    \text { ANOVA }       \begin{array} { l r r r r }  \hline & \text { Coefficients } & \text { Standard Error } & { t \text { Stat } } &  { \text { P-value } } \\ \hline \text { Intercept } & - 0.2143 & 11.5796 & - 0.0185 & 0.9853 \\ \text { Age } & 1.4448 & 0.3160 & 4.5717 & 0.0000 \\ \text { Manager } & - 22.5761 & 11.3488 & - 1.9893 & 0.0541 \\ \hline  \end{array}  -Referring to Scenario 14-17, what is the standard error of estimate? Coefficients Standard Error t Stat P-value Intercept -0.2143 11.5796 -0.0185 0.9853 Age 1.4448 0.3160 4.5717 0.0000 Manager -22.5761 11.3488 -1.9893 0.0541 -Referring to Scenario 14-17, what is the standard error of estimate?

(Short Answer)
4.9/5
(39)

14-30 Introduction to Multiple Regression  14-30 Introduction to Multiple Regression   -Referring to Scenario 14-7, the department head wants to test  H _ { 0 } : \beta _ { 1 } = \beta _ { 2 } = 0  . At a level of significance of 0.05, the null hypothesis is rejected. -Referring to Scenario 14-7, the department head wants to test H0:β1=β2=0H _ { 0 } : \beta _ { 1 } = \beta _ { 2 } = 0 . At a level of significance of 0.05, the null hypothesis is rejected.

(True/False)
4.8/5
(31)

SCENARIO 14-8 A financial analyst wanted to examine the relationship between salary (in $1,000 \$ 1,000 ) and 2 variables: age (X1=Age) \left(X_{1}=\mathrm{Age}\right) and experience in the field (X2= \left(X_{2}=\right. Exper). He took a sample of 20 employees and obtained the following Microsoft Excel output: Regression Statistics Multiple R 0.8535 R Square 0.7284 Adjusted R Square 0.6964 Standard Error 10.5630 Observations 20  ANOVA \text { ANOVA }  SCENARIO 14-8 A financial analyst wanted to examine the relationship between salary (in   \$ 1,000   ) and 2 variables: age   \left(X_{1}=\mathrm{Age}\right)   and experience in the field   \left(X_{2}=\right.   Exper). He took a sample of 20 employees and obtained the following Microsoft Excel output:   \begin{array}{lr} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8535 \\ \text { R Square } & 0.7284 \\ \text { Adjusted R Square } & 0.6964 \\ \text { Standard Error } & 10.5630 \\ \text { Observations } & 20 \\ \hline \end{array}    \text { ANOVA }      \begin{array}{lrrrrrr}  & \text { Coefficients } & \text { Standard Error } & {\text { t Stat }} & \text { P-value } & \text { Lower 95\% } &{\text { O5\% }} \\ \hline \text { Intercept } & 1.5740 & 9.2723 & 0.1698 & 0.8672 & -17.9888 & 21.1368 \\ \text { Age } & 1.3045 & 0.1956 & 6.6678 & 0.0000 & 0.8917 & 1.7173 \\ \text { Exper } & -0.1478 & 0.1944 & -0.7604 & 0.4574 & -0.5580 & 0.2624 \\ \hline \end{array}   Also the sum of squares due to the regression for the model that includes only Age is 5022.0654 while the sum of squares due to the regression for the model that includes only Exper is 125.9848. -Referring to Scenario 14-8, ____% of the variation in salary can be explained by the variation in experience while holding age constant. Coefficients Standard Error t Stat P-value Lower 95\% O5\% Intercept 1.5740 9.2723 0.1698 0.8672 -17.9888 21.1368 Age 1.3045 0.1956 6.6678 0.0000 0.8917 1.7173 Exper -0.1478 0.1944 -0.7604 0.4574 -0.5580 0.2624 Also the sum of squares due to the regression for the model that includes only Age is 5022.0654 while the sum of squares due to the regression for the model that includes only Exper is 125.9848. -Referring to Scenario 14-8, ____% of the variation in salary can be explained by the variation in experience while holding age constant.

(Short Answer)
4.9/5
(36)

SCENARIO 14-15 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), mean teacher salary in thousands of dollars (Salaries), and instructional spending per pupil in thousands of dollars (Spending) of 47 schools in the state. Following is the multiple regression output with Y=%Y = \% Passing as the dependent variable, X1=X _ { 1 } = Salaries and X2=X _ { 2 } = Spending: Regression Statistics Multiple R 0.4276 R Square 0.1828 Adjusted R Square 0.1457 Standard Error 5.7351 Observations 47 ANOVA  SCENARIO 14-15 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), mean teacher salary in thousands of dollars (Salaries), and instructional spending per pupil in thousands of dollars (Spending) of 47 schools in the state. Following is the multiple regression output with  Y = \%  Passing as the dependent variable,  X _ { 1 } =  Salaries and  X _ { 2 } =  Spending:   \begin{array}{lr} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.4276 \\ \text { R Square } & 0.1828 \\ \text { Adjusted R Square } & 0.1457 \\ \text { Standard Error } & 5.7351 \\ \text { Observations } & 47 \\ \hline \end{array}    ANOVA     \begin{array}{lrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \rho \text {-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & -72.9916 & 45.9106 & -1.5899 & 0.1190 & -165.5184 & 19.5352 \\ \text { Salary } & 2.7939 & 0.8974 & 3.1133 & 0.0032 & 0.9853 & 4.6025 \\ \text { Spending } & 0.3742 & 0.9782 & 0.3825 & 0.7039 & -1.5972 & 2.3455 \\ \hline \end{array}   -Referring to Scenario 14-15, the alternative hypothesis  H _ { 1 } : \text { At least one of } \beta _ { j } \neq 0 \text { for } j = 1,2  implies that percentage of students passing the proficiency test is affected by both of the explanatory variables. Coefficients Standard Error t Stat \rho -value Lower 95\% Upper 95\% Intercept -72.9916 45.9106 -1.5899 0.1190 -165.5184 19.5352 Salary 2.7939 0.8974 3.1133 0.0032 0.9853 4.6025 Spending 0.3742 0.9782 0.3825 0.7039 -1.5972 2.3455 -Referring to Scenario 14-15, the alternative hypothesis H1: At least one of βj0 for j=1,2H _ { 1 } : \text { At least one of } \beta _ { j } \neq 0 \text { for } j = 1,2 implies that percentage of students passing the proficiency test is affected by both of the explanatory variables.

(True/False)
4.9/5
(36)

SCENARIO 14-19 The marketing manager for a nationally franchised lawn service company would like to study the characteristics that differentiate home owners who do and do not have a lawn service. A random sample of 30 home owners located in a suburban area near a large city was selected; 11 did not have a lawn service (code 0) and 19 had a lawn service (code 1). Additional information available concerning these 30 home owners includes family income (Income, in thousands of dollars) and lawn size (Lawn Size, in thousands of square feet). The PHStat output is given below: Binary Logistic Regression Predictor Coefficients SE Coef Z p -Value Intercept -7.8562 3.8224 -2.0553 0.0398 Income 0.0304 0.0133 2.2897 0.0220 Lawn Size 1.2804 0.6971 1.8368 0.0662 Deviance 25.3089 -Referring to Scenario 14-19, what should be the decision ('reject' or 'do not reject') on the null hypothesis when testing whether LawnSize makes a significant contribution to the model in the presence of Income at a 0.05 level of significance?

(Short Answer)
4.8/5
(35)
Showing 281 - 300 of 394
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)