Exam 14: Introduction to Multiple

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

SCENARIO 14-20-A You are the CEO of a dairy company. You are planning to expand milk production by purchasing additional cows, lands and hiring more workers. From the existing 50 farms owned by the company, you have collected data on total milk production (in liters), the number of milking cows, land size (in acres) and the number of laborers. The data are shown below and also available in the Excel file Scenario14-20-DataA.XLSX. S  SCENARIO 14-20-A You are the CEO of a dairy company. You are planning to expand milk production by purchasing additional cows, lands and hiring more workers. From the existing 50 farms owned by the company, you have collected data on total milk production (in liters), the number of milking cows, land size (in acres) and the number of laborers. The data are shown below and also available in the Excel file Scenario14-20-DataA.XLSX. S   You believe that the number of milking cows  \left( X _ { 1 } \right) , land size  \left( X _ { 2 } \right)  and the number of laborers  \left( X _ { 3 } \right)  are the best predictors for total milk production on any given farm. -Referring to Scenario 14-20-A, which of the following is the correct alternative hypothesis to determine whether there is a significant relationship between total milk production and the entire Set of explanatory variables? a)  H _ { 1 } :  All  \beta _ { j } \neq 0  for  j = 0,1,2,3  b)  H _ { 1 } :  All  \beta _ { j } \neq 0  for  j = 1,2,3  c)  H _ { 1 } :  At least one of  \beta _ { j } \neq 0  for  j = 0,1,2,3  d)  H _ { 1 } :  At least one of  \beta _ { j } \neq 0  for  j = 1,2,3 You believe that the number of milking cows (X1)\left( X _ { 1 } \right) , land size (X2)\left( X _ { 2 } \right) and the number of laborers (X3)\left( X _ { 3 } \right) are the best predictors for total milk production on any given farm. -Referring to Scenario 14-20-A, which of the following is the correct alternative hypothesis to determine whether there is a significant relationship between total milk production and the entire Set of explanatory variables? a) H1:H _ { 1 } : All βj0\beta _ { j } \neq 0 for j=0,1,2,3j = 0,1,2,3 b) H1:H _ { 1 } : All βj0\beta _ { j } \neq 0 for j=1,2,3j = 1,2,3 c) H1:H _ { 1 } : At least one of βj0\beta _ { j } \neq 0 for j=0,1,2,3j = 0,1,2,3 d) H1:H _ { 1 } : At least one of βj0\beta _ { j } \neq 0 for j=1,2,3j = 1,2,3

(Short Answer)
4.9/5
(35)

SCENARIO 14-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size). House size is measured in hundreds of square feet and income is measured in thousands of dollars. The builder randomly selected 50 families and ran the multiple regression. Partial Microsoft Excel output is provided below: SCENARIO 14-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size). House size is measured in hundreds of square feet and income is measured in thousands of dollars. The builder randomly selected 50 families and ran the multiple regression. Partial Microsoft Excel output is provided below:   -Referring to Scenario 14-4, suppose the builder wants to test whether the coefficient on Income is significantly different from 0. What is the value of the relevant t-statistic? -Referring to Scenario 14-4, suppose the builder wants to test whether the coefficient on Income is significantly different from 0. What is the value of the relevant t-statistic?

(Multiple Choice)
5.0/5
(34)

An interaction term in a multiple regression model may be used when

(Multiple Choice)
4.8/5
(36)

SCENARIO 14-20-B You are the CEO of a dairy company. You are planning to expand milk production by purchasing additional cows, lands and hiring more workers. From the existing 50 farms owned by the company, you have collected data on total milk production (in liters), the number of milking cows, land size (in acres) and the number of laborers. The data are shown below and also available in the Excel file Scenario14-20-DataB.XLSX. MILK 84686 101876 103248 70508 76072 86615 87508 105195 120351 68658  SCENARIO 14-20-B You are the CEO of a dairy company. You are planning to expand milk production by purchasing additional cows, lands and hiring more workers. From the existing 50 farms owned by the company, you have collected data on total milk production (in liters), the number of milking cows, land size (in acres) and the number of laborers. The data are shown below and also available in the Excel file Scenario14-20-DataB.XLSX. MILK 84686 101876 103248 70508 76072 86615 87508 105195 120351 68658   You believe that the number of milking cows  \left( X _ { 1 } \right) , land size  \left( X _ { 2 } \right)  and the number of laborers  \left( X _ { 3 } \right)  are the best predictors for total milk production on any given farm. -Referring to Scenario 14-20-B, which of the following is a correct interpretation for the adjusted r-square? You believe that the number of milking cows (X1)\left( X _ { 1 } \right) , land size (X2)\left( X _ { 2 } \right) and the number of laborers (X3)\left( X _ { 3 } \right) are the best predictors for total milk production on any given farm. -Referring to Scenario 14-20-B, which of the following is a correct interpretation for the adjusted r-square?

(Multiple Choice)
4.8/5
(32)

SCENARIO 14-8 A financial analyst wanted to examine the relationship between salary (in $1,000 \$ 1,000 ) and 2 variables: age (X1=Age) \left(X_{1}=\mathrm{Age}\right) and experience in the field (X2= \left(X_{2}=\right. Exper). He took a sample of 20 employees and obtained the following Microsoft Excel output: Regression Statistics Multiple R 0.8535 R Square 0.7284 Adjusted R Square 0.6964 Standard Error 10.5630 Observations 20  ANOVA \text { ANOVA }  SCENARIO 14-8 A financial analyst wanted to examine the relationship between salary (in   \$ 1,000   ) and 2 variables: age   \left(X_{1}=\mathrm{Age}\right)   and experience in the field   \left(X_{2}=\right.   Exper). He took a sample of 20 employees and obtained the following Microsoft Excel output:   \begin{array}{lr} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8535 \\ \text { R Square } & 0.7284 \\ \text { Adjusted R Square } & 0.6964 \\ \text { Standard Error } & 10.5630 \\ \text { Observations } & 20 \\ \hline \end{array}    \text { ANOVA }      \begin{array}{lrrrrrr}  & \text { Coefficients } & \text { Standard Error } & {\text { t Stat }} & \text { P-value } & \text { Lower 95\% } &{\text { O5\% }} \\ \hline \text { Intercept } & 1.5740 & 9.2723 & 0.1698 & 0.8672 & -17.9888 & 21.1368 \\ \text { Age } & 1.3045 & 0.1956 & 6.6678 & 0.0000 & 0.8917 & 1.7173 \\ \text { Exper } & -0.1478 & 0.1944 & -0.7604 & 0.4574 & -0.5580 & 0.2624 \\ \hline \end{array}   Also the sum of squares due to the regression for the model that includes only Age is 5022.0654 while the sum of squares due to the regression for the model that includes only Exper is 125.9848. -Referring to Scenario 14-8, the value of the adjusted coefficient of multiple determination is ________. Coefficients Standard Error t Stat P-value Lower 95\% O5\% Intercept 1.5740 9.2723 0.1698 0.8672 -17.9888 21.1368 Age 1.3045 0.1956 6.6678 0.0000 0.8917 1.7173 Exper -0.1478 0.1944 -0.7604 0.4574 -0.5580 0.2624 Also the sum of squares due to the regression for the model that includes only Age is 5022.0654 while the sum of squares due to the regression for the model that includes only Exper is 125.9848. -Referring to Scenario 14-8, the value of the adjusted coefficient of multiple determination is ________.

(Short Answer)
4.9/5
(35)

SCENARIO 14-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size). House size is measured in hundreds of square feet and income is measured in thousands of dollars. The builder randomly selected 50 families and ran the multiple regression. Partial Microsoft Excel output is provided below: SCENARIO 14-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size). House size is measured in hundreds of square feet and income is measured in thousands of dollars. The builder randomly selected 50 families and ran the multiple regression. Partial Microsoft Excel output is provided below:   -Referring to Scenario 14-4, which of the following values for the level of significance is the smallest for which at most one explanatory variable is significant individually? -Referring to Scenario 14-4, which of the following values for the level of significance is the smallest for which at most one explanatory variable is significant individually?

(Multiple Choice)
4.8/5
(36)

SCENARIO 14-3 An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below. SCENARIO 14-3 An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.   -Referring to Scenario 14-3, the p-value for GDP is -Referring to Scenario 14-3, the p-value for GDP is

(Multiple Choice)
4.9/5
(34)

SCENARIO 14-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size). House size is measured in hundreds of square feet and income is measured in thousands of dollars. The builder randomly selected 50 families and ran the multiple regression. Partial Microsoft Excel output is provided below: SCENARIO 14-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size). House size is measured in hundreds of square feet and income is measured in thousands of dollars. The builder randomly selected 50 families and ran the multiple regression. Partial Microsoft Excel output is provided below:   -Referring to Scenario 14-4, what annual income (in thousands of dollars) would an individual with a family size of 9 need to attain a predicted 5,000 square foot home (House = 50)? -Referring to Scenario 14-4, what annual income (in thousands of dollars) would an individual with a family size of 9 need to attain a predicted 5,000 square foot home (House = 50)?

(Short Answer)
4.8/5
(26)

SCENARIO 14-15 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), mean teacher salary in thousands of dollars (Salaries), and instructional spending per pupil in thousands of dollars (Spending) of 47 schools in the state. Following is the multiple regression output with Y=%Y = \% Passing as the dependent variable, X1=X _ { 1 } = Salaries and X2=X _ { 2 } = Spending: Regression Statistics Multiple R 0.4276 R Square 0.1828 Adjusted R Square 0.1457 Standard Error 5.7351 Observations 47 ANOVA  SCENARIO 14-15 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), mean teacher salary in thousands of dollars (Salaries), and instructional spending per pupil in thousands of dollars (Spending) of 47 schools in the state. Following is the multiple regression output with  Y = \%  Passing as the dependent variable,  X _ { 1 } =  Salaries and  X _ { 2 } =  Spending:   \begin{array}{lr} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.4276 \\ \text { R Square } & 0.1828 \\ \text { Adjusted R Square } & 0.1457 \\ \text { Standard Error } & 5.7351 \\ \text { Observations } & 47 \\ \hline \end{array}    ANOVA     \begin{array}{lrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \rho \text {-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & -72.9916 & 45.9106 & -1.5899 & 0.1190 & -165.5184 & 19.5352 \\ \text { Salary } & 2.7939 & 0.8974 & 3.1133 & 0.0032 & 0.9853 & 4.6025 \\ \text { Spending } & 0.3742 & 0.9782 & 0.3825 & 0.7039 & -1.5972 & 2.3455 \\ \hline \end{array}   -Referring to Scenario 14-15, there is sufficient evidence that the percentage of students passing the proficiency test depends on both of the explanatory variables at a 5% level of significance. Coefficients Standard Error t Stat \rho -value Lower 95\% Upper 95\% Intercept -72.9916 45.9106 -1.5899 0.1190 -165.5184 19.5352 Salary 2.7939 0.8974 3.1133 0.0032 0.9853 4.6025 Spending 0.3742 0.9782 0.3825 0.7039 -1.5972 2.3455 -Referring to Scenario 14-15, there is sufficient evidence that the percentage of students passing the proficiency test depends on both of the explanatory variables at a 5% level of significance.

(True/False)
4.8/5
(36)

SCENARIO 14-17 Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age) and a dummy variable for management position (Manager: 1 = yes, 0 = no). The results of the regression analysis are given below: \ Regression Statistics Multiple R 0.6391 R Square 0.4085 Adjusted R Square 0.3765 Standard Error 18.8929 Observations 40  ANOVA \text { ANOVA }  SCENARIO 14-17 Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age) and a dummy variable for management position (Manager: 1 = yes, 0 = no). The results of the regression analysis are given below:  \begin{array}{l} \hline \ { \text { Regression Statistics } } \\ \hline \text { Multiple R } & 0.6391 \\ \text { R Square } & 0.4085 \\ \text { Adjusted R Square } & 0.3765 \\ \text { Standard Error } & 18.8929 \\ \text { Observations } & 40 \\ \hline \end{array}    \text { ANOVA }       \begin{array} { l r r r r }  \hline & \text { Coefficients } & \text { Standard Error } & { t \text { Stat } } &  { \text { P-value } } \\ \hline \text { Intercept } & - 0.2143 & 11.5796 & - 0.0185 & 0.9853 \\ \text { Age } & 1.4448 & 0.3160 & 4.5717 & 0.0000 \\ \text { Manager } & - 22.5761 & 11.3488 & - 1.9893 & 0.0541 \\ \hline  \end{array}  -Referring to Scenario 14-17, the null hypothesis  H _ { 0 } : \beta _ { 1 } = \beta _ { 2 } = 0  implies that the number of weeks a worker is unemployed due to a layoff is not related to one of the explanatory variables. Coefficients Standard Error t Stat P-value Intercept -0.2143 11.5796 -0.0185 0.9853 Age 1.4448 0.3160 4.5717 0.0000 Manager -22.5761 11.3488 -1.9893 0.0541 -Referring to Scenario 14-17, the null hypothesis H0:β1=β2=0H _ { 0 } : \beta _ { 1 } = \beta _ { 2 } = 0 implies that the number of weeks a worker is unemployed due to a layoff is not related to one of the explanatory variables.

(True/False)
4.8/5
(36)

SCENARIO 14-20-B You are the CEO of a dairy company. You are planning to expand milk production by purchasing additional cows, lands and hiring more workers. From the existing 50 farms owned by the company, you have collected data on total milk production (in liters), the number of milking cows, land size (in acres) and the number of laborers. The data are shown below and also available in the Excel file Scenario14-20-DataB.XLSX. MILK 84686 101876 103248 70508 76072 86615 87508 105195 120351 68658  SCENARIO 14-20-B You are the CEO of a dairy company. You are planning to expand milk production by purchasing additional cows, lands and hiring more workers. From the existing 50 farms owned by the company, you have collected data on total milk production (in liters), the number of milking cows, land size (in acres) and the number of laborers. The data are shown below and also available in the Excel file Scenario14-20-DataB.XLSX. MILK 84686 101876 103248 70508 76072 86615 87508 105195 120351 68658   You believe that the number of milking cows  \left( X _ { 1 } \right) , land size  \left( X _ { 2 } \right)  and the number of laborers  \left( X _ { 3 } \right)  are the best predictors for total milk production on any given farm. -Referring to Scenario 14-20-B, what is the p-value of the test statistic when testing whether the number of laborers has any effect on the total milk production while holding constant the effect of the other independent variables? You believe that the number of milking cows (X1)\left( X _ { 1 } \right) , land size (X2)\left( X _ { 2 } \right) and the number of laborers (X3)\left( X _ { 3 } \right) are the best predictors for total milk production on any given farm. -Referring to Scenario 14-20-B, what is the p-value of the test statistic when testing whether the number of laborers has any effect on the total milk production while holding constant the effect of the other independent variables?

(Short Answer)
4.9/5
(33)

SCENARIO 14-14 An automotive engineer would like to be able to predict automobile mileages. She believes that the two most important characteristics that affect mileage are horsepower and the number of cylinders (4 or 6) of a car. She believes that the appropriate model is Y=40-0.05+20-0.1 where = horsepower =1 if 4 cylinders, 0 if 6 cylinders Y= mileage. -Referring to Scenario 14-14, the predicted mileage for a 300 horsepower, 6-cylinder car is ________.

(Short Answer)
5.0/5
(39)

SCENARIO 14-20-B You are the CEO of a dairy company. You are planning to expand milk production by purchasing additional cows, lands and hiring more workers. From the existing 50 farms owned by the company, you have collected data on total milk production (in liters), the number of milking cows, land size (in acres) and the number of laborers. The data are shown below and also available in the Excel file Scenario14-20-DataB.XLSX. MILK 84686 101876 103248 70508 76072 86615 87508 105195 120351 68658  SCENARIO 14-20-B You are the CEO of a dairy company. You are planning to expand milk production by purchasing additional cows, lands and hiring more workers. From the existing 50 farms owned by the company, you have collected data on total milk production (in liters), the number of milking cows, land size (in acres) and the number of laborers. The data are shown below and also available in the Excel file Scenario14-20-DataB.XLSX. MILK 84686 101876 103248 70508 76072 86615 87508 105195 120351 68658   You believe that the number of milking cows  \left( X _ { 1 } \right) , land size  \left( X _ { 2 } \right)  and the number of laborers  \left( X _ { 3 } \right)  are the best predictors for total milk production on any given farm. -Referring to Scenario 14-20-B, which of the following is a correct interpretation for the slope coefficient of the number of laborers? You believe that the number of milking cows (X1)\left( X _ { 1 } \right) , land size (X2)\left( X _ { 2 } \right) and the number of laborers (X3)\left( X _ { 3 } \right) are the best predictors for total milk production on any given farm. -Referring to Scenario 14-20-B, which of the following is a correct interpretation for the slope coefficient of the number of laborers?

(Multiple Choice)
4.9/5
(31)

SCENARIO 14-10 You worked as an intern at We Always Win Car Insurance Company last summer. You notice that individual car insurance premiums depend very much on the age of the individual and the number of traffic tickets received by the individual. You performed a regression analysis in EXCEL and obtained the following partial information: Regression Statistics Multiple R 0.8546 R Square 0.7303 Adjusted R Square 0.6853 Standard Error 226.7502 Observations 15  ANOVA \text { ANOVA }  SCENARIO 14-10 You worked as an intern at We Always Win Car Insurance Company last summer. You notice that individual car insurance premiums depend very much on the age of the individual and the number of traffic tickets received by the individual. You performed a regression analysis in EXCEL and obtained the following partial information:  \begin{array}{l} \hline{ \text { Regression } \text { Statistics } } \\ \hline \text { Multiple R } & 0.8546 \\ \text { R Square } & 0.7303 \\ \text { Adjusted R Square } & 0.6853 \\ \text { Standard Error } & 226.7502 \\ \text { Observations } & 15 \\ \hline \end{array}    \text { ANOVA }      \begin{array} { l r r r r r r }  \hline & \text { Coefficients } & \text { Standard Error } & { \text { tStat } } & \text { P-value } & \text { Lower 99\% } & \text { Upper 99\% } \\ \hline \text { Intercept } & 821.2617 & 161.9391 & 5.0714 & 0.0003 & 326.6124 & 1315.9111 \\ \text { Age } & - 1.4061 & 2.5988 & - 0.5411 & 0.5984 & - 9.3444 & 6.5321 \\ \text { Tickets } & 243.4401 & 43.2470 & 5.6291 & 0.0001 & 111.3406 & 375.5396 \\ \hline \end{array}  -Referring to Scenario 14-10, the residual mean squares (MSE) that are missing in the ANOVA table should be _____. Coefficients Standard Error tStat P-value Lower 99\% Upper 99\% Intercept 821.2617 161.9391 5.0714 0.0003 326.6124 1315.9111 Age -1.4061 2.5988 -0.5411 0.5984 -9.3444 6.5321 Tickets 243.4401 43.2470 5.6291 0.0001 111.3406 375.5396 -Referring to Scenario 14-10, the residual mean squares (MSE) that are missing in the ANOVA table should be _____.

(Short Answer)
4.8/5
(30)

SCENARIO 14-16 What are the factors that determine the acceleration time (in sec.) from 0 to 60 miles per hour of a car? Data on the following variables for 30 different vehicle models were collected: YY (Accel Time): Acceleration time in sec. XIX _ { I } (Engine Size): c.c. X2X _ { 2 } (Sedan): 1 if the vehicle model is a sedan and 0 otherwise The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below. Regression Statistics Multiple R 0.6096 R Square 0.3716 Adjusted R Square 0.3251 Standard Error 1.4629 Observations 30 ANOVA  SCENARIO 14-16 What are the factors that determine the acceleration time (in sec.) from 0 to 60 miles per hour of a car? Data on the following variables for 30 different vehicle models were collected:  Y  (Accel Time): Acceleration time in sec.  X _ { I }  (Engine Size): c.c.  X _ { 2 }  (Sedan): 1 if the vehicle model is a sedan and 0 otherwise  The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below.   \begin{array}{lr} \hline{\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.6096 \\ \text { R Square } & 0.3716 \\ \text { Adjusted R Square } & 0.3251 \\ \text { Standard Error } & 1.4629 \\ \text { Observations } & 30 \\ \hline \end{array}   ANOVA      \begin{array}{lrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & 7.1052 & 0.6574 & 10.8086 & 0.0000 & 5.7564 & 8.4540 \\ \text { Engine Size } & -0.0005 & 0.0001 & -3.6477 & 0.0011 & -0.0008 & -0.0002 \\ \text { Sedan } & 0.7264 & 0.5564 & 1.3056 & 0.2027 & -0.4152 & 1.8681 \\ \hline \end{array}      -Referring to Scenario 14-16, the errors (residuals) appear to be right-skewed. Coefficients Standard Error t Stat P-value Lower 95\% Upper 95\% Intercept 7.1052 0.6574 10.8086 0.0000 5.7564 8.4540 Engine Size -0.0005 0.0001 -3.6477 0.0011 -0.0008 -0.0002 Sedan 0.7264 0.5564 1.3056 0.2027 -0.4152 1.8681  SCENARIO 14-16 What are the factors that determine the acceleration time (in sec.) from 0 to 60 miles per hour of a car? Data on the following variables for 30 different vehicle models were collected:  Y  (Accel Time): Acceleration time in sec.  X _ { I }  (Engine Size): c.c.  X _ { 2 }  (Sedan): 1 if the vehicle model is a sedan and 0 otherwise  The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below.   \begin{array}{lr} \hline{\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.6096 \\ \text { R Square } & 0.3716 \\ \text { Adjusted R Square } & 0.3251 \\ \text { Standard Error } & 1.4629 \\ \text { Observations } & 30 \\ \hline \end{array}   ANOVA      \begin{array}{lrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & 7.1052 & 0.6574 & 10.8086 & 0.0000 & 5.7564 & 8.4540 \\ \text { Engine Size } & -0.0005 & 0.0001 & -3.6477 & 0.0011 & -0.0008 & -0.0002 \\ \text { Sedan } & 0.7264 & 0.5564 & 1.3056 & 0.2027 & -0.4152 & 1.8681 \\ \hline \end{array}      -Referring to Scenario 14-16, the errors (residuals) appear to be right-skewed. -Referring to Scenario 14-16, the errors (residuals) appear to be right-skewed.

(True/False)
4.8/5
(34)

The coefficient of multiple determination measures the proportion of the total variation in the dependent variable that is explained by the set of independent variables.

(True/False)
4.9/5
(33)

SCENARIO 14-15 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), mean teacher salary in thousands of dollars (Salaries), and instructional spending per pupil in thousands of dollars (Spending) of 47 schools in the state. Following is the multiple regression output with Y=%Y = \% Passing as the dependent variable, X1=X _ { 1 } = Salaries and X2=X _ { 2 } = Spending: Regression Statistics Multiple R 0.4276 R Square 0.1828 Adjusted R Square 0.1457 Standard Error 5.7351 Observations 47 ANOVA  SCENARIO 14-15 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), mean teacher salary in thousands of dollars (Salaries), and instructional spending per pupil in thousands of dollars (Spending) of 47 schools in the state. Following is the multiple regression output with  Y = \%  Passing as the dependent variable,  X _ { 1 } =  Salaries and  X _ { 2 } =  Spending:   \begin{array}{lr} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.4276 \\ \text { R Square } & 0.1828 \\ \text { Adjusted R Square } & 0.1457 \\ \text { Standard Error } & 5.7351 \\ \text { Observations } & 47 \\ \hline \end{array}    ANOVA     \begin{array}{lrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \rho \text {-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & -72.9916 & 45.9106 & -1.5899 & 0.1190 & -165.5184 & 19.5352 \\ \text { Salary } & 2.7939 & 0.8974 & 3.1133 & 0.0032 & 0.9853 & 4.6025 \\ \text { Spending } & 0.3742 & 0.9782 & 0.3825 & 0.7039 & -1.5972 & 2.3455 \\ \hline \end{array}   -Referring to Scenario 14-15, you can conclude definitively that instructional spending per pupil individually has no impact on the mean percentage of students passing the proficiency test, taking into account the effect of mean teacher salary, at a 10% level of significance based solely on but not actually computing the 90% confidence interval estimate for  \beta _ { 2 }  . Coefficients Standard Error t Stat \rho -value Lower 95\% Upper 95\% Intercept -72.9916 45.9106 -1.5899 0.1190 -165.5184 19.5352 Salary 2.7939 0.8974 3.1133 0.0032 0.9853 4.6025 Spending 0.3742 0.9782 0.3825 0.7039 -1.5972 2.3455 -Referring to Scenario 14-15, you can conclude definitively that instructional spending per pupil individually has no impact on the mean percentage of students passing the proficiency test, taking into account the effect of mean teacher salary, at a 10% level of significance based solely on but not actually computing the 90% confidence interval estimate for β2\beta _ { 2 } .

(True/False)
4.8/5
(31)

14-30 Introduction to Multiple Regression  14-30 Introduction to Multiple Regression   -Referring to Scenario 14-7, the department head wants to test  H _ { 0 } : \beta _ { 1 } = \beta _ { 2 } = 0  . The critical value of the F test for a level of significance of 0.05 is ________. -Referring to Scenario 14-7, the department head wants to test H0:β1=β2=0H _ { 0 } : \beta _ { 1 } = \beta _ { 2 } = 0 . The critical value of the F test for a level of significance of 0.05 is ________.

(Short Answer)
5.0/5
(32)

SCENARIO 14-3 An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below. SCENARIO 14-3 An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.   -Referring to Scenario 14-3, one economy in the sample had an aggregate consumption level of $3 billion, a GDP of $3.5 billion, and an aggregate price level of 125. What is the residual for this Data point? -Referring to Scenario 14-3, one economy in the sample had an aggregate consumption level of $3 billion, a GDP of $3.5 billion, and an aggregate price level of 125. What is the residual for this Data point?

(Multiple Choice)
4.8/5
(33)

SCENARIO 14-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size). House size is measured in hundreds of square feet and income is measured in thousands of dollars. The builder randomly selected 50 families and ran the multiple regression. Partial Microsoft Excel output is provided below:  SCENARIO 14-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size). House size is measured in hundreds of square feet and income is measured in thousands of dollars. The builder randomly selected 50 families and ran the multiple regression. Partial Microsoft Excel output is provided below:   -Referring to Scenario 14-4, the coefficient of partial determination  r _ { Y 1 \cdot 2 } ^ { 2 }  ⋅ is ____. -Referring to Scenario 14-4, the coefficient of partial determination rY122r _ { Y 1 \cdot 2 } ^ { 2 } ⋅ is ____.

(Short Answer)
4.9/5
(30)
Showing 341 - 360 of 394
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)