Exam 14: Introduction to Multiple
Exam 1: Defining and Collecting Data202 Questions
Exam 2: Organizing and Visualizing256 Questions
Exam 3: Numerical Descriptive Measures217 Questions
Exam 4: Basic Probability167 Questions
Exam 5: Discrete Probability Distributions165 Questions
Exam 6: The Normal Distribution and Other Continuous Distributions170 Questions
Exam 7: Sampling Distributions165 Questions
Exam 8: Confidence Interval Estimation219 Questions
Exam 9: Fundamentals of Hypothesis Testing: One-Sample Tests194 Questions
Exam 10: Two-Sample Tests240 Questions
Exam 11: Analysis of Variance170 Questions
Exam 12: Chi-Square and Nonparametric188 Questions
Exam 13: Simple Linear Regression243 Questions
Exam 14: Introduction to Multiple394 Questions
Exam 15: Multiple Regression146 Questions
Exam 16: Time-Series Forecasting235 Questions
Exam 17: Getting Ready to Analyze Data386 Questions
Exam 18: Statistical Applications in Quality Management159 Questions
Exam 19: Decision Making126 Questions
Exam 20: Probability and Combinatorics421 Questions
Select questions type
SCENARIO 14-16
What are the factors that determine the acceleration time (in sec.) from 0 to 60 miles per hour of a
car? Data on the following variables for 30 different vehicle models were collected: (Accel Time): Acceleration time in sec.
(Engine Size): c.c.
(Sedan): 1 if the vehicle model is a sedan and 0 otherwise
The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below.
Regression Statistics Multiple R 0.6096 R Square 0.3716 Adjusted R Square 0.3251 Standard Error 1.4629 Observations 30
ANOVA
Coefficients Standard Error t Stat P-value Lower 95\% Upper 95\% Intercept 7.1052 0.6574 10.8086 0.0000 5.7564 8.4540 Engine Size -0.0005 0.0001 -3.6477 0.0011 -0.0008 -0.0002 Sedan 0.7264 0.5564 1.3056 0.2027 -0.4152 1.8681
-Referring to Scenario 14-16, the error appears to be left-skewed.


(True/False)
4.9/5
(37)
SCENARIO 14-17
Given below are results from the regression analysis where the dependent variable is the number of
weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age
of the worker (Age) and a dummy variable for management position (Manager: 1 = yes, 0 = no).
The results of the regression analysis are given below: \ Regression Statistics Multiple R 0.6391 R Square 0.4085 Adjusted R Square 0.3765 Standard Error 18.8929 Observations 40
Coefficients Standard Error t Stat P-value Intercept -0.2143 11.5796 -0.0185 0.9853 Age 1.4448 0.3160 4.5717 0.0000 Manager -22.5761 11.3488 -1.9893 0.0541
-Referring to Scenario 14-17, the alternative hypothesis implies that the number of weeks a worker is unemployed due to a layoff is affected by at least
one of the explanatory variables.

(True/False)
4.9/5
(33)
SCENARIO 14-15
The superintendent of a school district wanted to predict the percentage of students passing a sixth-
grade proficiency test. She obtained the data on percentage of students passing the proficiency test
(% Passing), mean teacher salary in thousands of dollars (Salaries), and instructional spending per
pupil in thousands of dollars (Spending) of 47 schools in the state. Following is the multiple regression output with Passing as the dependent variable,
Salaries and Spending:
Regression Statistics Multiple R 0.4276 R Square 0.1828 Adjusted R Square 0.1457 Standard Error 5.7351 Observations 47
ANOVA
Coefficients Standard Error t Stat \rho -value Lower 95\% Upper 95\% Intercept -72.9916 45.9106 -1.5899 0.1190 -165.5184 19.5352 Salary 2.7939 0.8974 3.1133 0.0032 0.9853 4.6025 Spending 0.3742 0.9782 0.3825 0.7039 -1.5972 2.3455
-Referring to Scenario 14-15, which of the following is a correct statement?

(Multiple Choice)
4.9/5
(33)
SCENARIO 14-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage
spending by companies. She proceeds to randomly select 26 large corporations and record
information in millions of dollars. The Microsoft Excel output below shows results of this multiple
regression.
-Referring to Scenario 14-5, what fraction of the variability in sales is explained by spending on capital and wages?

(Multiple Choice)
4.9/5
(39)
SCENARIO 14-20-A
You are the CEO of a dairy company. You are planning to expand milk production by purchasing
additional cows, lands and hiring more workers. From the existing 50 farms owned by the company,
you have collected data on total milk production (in liters), the number of milking cows, land size (in
acres) and the number of laborers. The data are shown below and also available in the Excel file
Scenario14-20-DataA.XLSX.
S
You believe that the number of milking cows , land size and the number of laborers are the best predictors for total milk production on any given farm.
-Referring to Scenario 14-20-A, what are the lower and upper limits of the 95% confidence
interval estimate for the change in mean total milk production as a result of adding one more
laborer after taking into consideration the effect of all the other independent variables?

(Short Answer)
4.7/5
(34)
SCENARIO 14-16
What are the factors that determine the acceleration time (in sec.) from 0 to 60 miles per hour of a
car? Data on the following variables for 30 different vehicle models were collected: (Accel Time): Acceleration time in sec.
(Engine Size): c.c.
(Sedan): 1 if the vehicle model is a sedan and 0 otherwise
The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below.
Regression Statistics Multiple R 0.6096 R Square 0.3716 Adjusted R Square 0.3251 Standard Error 1.4629 Observations 30
ANOVA
Coefficients Standard Error t Stat P-value Lower 95\% Upper 95\% Intercept 7.1052 0.6574 10.8086 0.0000 5.7564 8.4540 Engine Size -0.0005 0.0001 -3.6477 0.0011 -0.0008 -0.0002 Sedan 0.7264 0.5564 1.3056 0.2027 -0.4152 1.8681
-Referring to Scenario 14-16, there is enough evidence to conclude that being a
sedan or not makes a significant contribution to the regression model in the presence of the other
independent variable at a 5% level of significance.


(True/False)
4.8/5
(30)
SCENARIO 14-13
An econometrician is interested in evaluating the relationship of demand for building materials to
mortgage rates in Los Angeles and San Francisco. He believes that the appropriate model is
where
where = mortgage rate in \% =1 if SF, 0 if LA Y= demand in \ 100 per capita
-Referring to Scenario 14-13, the fitted model for predicting demand in Los Angeles is ________. a)
b)
c)
d)
(Short Answer)
4.8/5
(25)
SCENARIO 14-19
The marketing manager for a nationally franchised lawn service company would like to study the
characteristics that differentiate home owners who do and do not have a lawn service. A random
sample of 30 home owners located in a suburban area near a large city was selected; 11 did not have
a lawn service (code 0) and 19 had a lawn service (code 1). Additional information available
concerning these 30 home owners includes family income (Income, in thousands of dollars) and lawn
size (Lawn Size, in thousands of square feet).
The PHStat output is given below:
Binary Logistic Regression Predictor Coefficients SE Coef Z p -Value Intercept -7.8562 3.8224 -2.0553 0.0398 Income 0.0304 0.0133 2.2897 0.0220 Lawn Size 1.2804 0.6971 1.8368 0.0662 Deviance 25.3089
-Referring to Scenario 14-19, what are the degrees of freedom for the chi-square distribution
when testing whether the model is a good-fitting model?
(Short Answer)
5.0/5
(35)
SCENARIO 14-13
An econometrician is interested in evaluating the relationship of demand for building materials to
mortgage rates in Los Angeles and San Francisco. He believes that the appropriate model is
where
where = mortgage rate in \% =1 if SF, 0 if LA Y= demand in \ 100 per capita
-Referring to Scenario 14-13, holding constant the effect of city, each additional increase of 1%
in the mortgage rate would lead to an estimated increase of ________ in the mean demand.
(Short Answer)
4.8/5
(36)
SCENARIO 14-18
A logistic regression model was estimated in order to predict the probability that a randomly chosen
university or college would be a private university using information on mean total Scholastic
Aptitude Test score (SAT) at the university or college and whether the TOEFL criterion is at least 90
(Toefl90 = 1 if yes, 0 otherwise.) The dependent variable, Y, is school type (Type = 1 if private and
0 otherwise).
The PHStat output is given below:
Binary Logistic Regression Predictor Coefficients SE Coef Z p -Value Intercept -3.9594 1.6741 -2.3650 0.0180 SAT 0.0028 0.0011 2.5459 0.0109 Toefl90:1 0.1928 0.5827 0.3309 0.7407 Deviance 101.9826
-Referring to Scenario 14-18, which of the following is the correct interpretation for the Toefl90 slope coefficient?
(Multiple Choice)
4.8/5
(33)
SCENARIO 14-8 A financial analyst wanted to examine the relationship between salary (in ) and 2 variables: age and experience in the field Exper). He took a sample of 20 employees and obtained the following Microsoft Excel output:
Regression Statistics Multiple R 0.8535 R Square 0.7284 Adjusted R Square 0.6964 Standard Error 10.5630 Observations 20
Coefficients Standard Error t Stat P-value Lower 95\% O5\% Intercept 1.5740 9.2723 0.1698 0.8672 -17.9888 21.1368 Age 1.3045 0.1956 6.6678 0.0000 0.8917 1.7173 Exper -0.1478 0.1944 -0.7604 0.4574 -0.5580 0.2624
Also the sum of squares due to the regression for the model that includes only Age is 5022.0654 while the
sum of squares due to the regression for the model that includes only Exper is 125.9848.
-Referring to Scenario 14-8, the coefficient of partial determination ⋅ is ____.

(Short Answer)
4.8/5
(37)
14-30 Introduction to Multiple Regression
-Referring to Scenario 14-7, the net regression coefficient of is ________.

(Short Answer)
4.7/5
(34)
SCENARIO 14-12 As a project for his business statistics class, a student examined the factors that determined parking meter rates throughout the campus area. Data were collected for the price (\$) per hour of parking, blocks to the quadrangle, and whether the parking is on or off campus. The population regression model hypothesized is
where
is the meter price per hour
is the number of blocks to the quad
is a dummy variable that takes the value 1 if the meter is located on campus and 0 otherwise
The following Excel results are obtained.
Regression Statistics Multiple R 0.5536 R Square 0.3064 Adjusted R Square 0.2812 Standard Error 0.4492 Observations 58
ANOVA
df SS MS F Significance F Regression 2 4.9035 2.4518 12.1501 0.0000 Residual 55 11.0984 0.2018 Total 57 16.0019
Coefficients Standard Error Stat P-value Lower 99\% Upper 99\% Intercept 1.6500 0.2028 8.1359 0.0000 1.1089 2.1912 Block -0.2504 0.0529 -4.7355 0.0000 -0.3915 -0.1093 Campus 0.1552 0.1297 1.1966 0.2366 -0.1908 0.5011
-Referring to Scenario 14-12, if one is already off campus but decides to park 3 more blocks
from the quad, the estimated mean parking meter rate will decrease by ____.
(Not Answered)
This question doesn't have any answer yet
SCENARIO 14-8 A financial analyst wanted to examine the relationship between salary (in ) and 2 variables: age and experience in the field Exper). He took a sample of 20 employees and obtained the following Microsoft Excel output:
Regression Statistics Multiple R 0.8535 R Square 0.7284 Adjusted R Square 0.6964 Standard Error 10.5630 Observations 20
Coefficients Standard Error t Stat P-value Lower 95\% O5\% Intercept 1.5740 9.2723 0.1698 0.8672 -17.9888 21.1368 Age 1.3045 0.1956 6.6678 0.0000 0.8917 1.7173 Exper -0.1478 0.1944 -0.7604 0.4574 -0.5580 0.2624
Also the sum of squares due to the regression for the model that includes only Age is 5022.0654 while the
sum of squares due to the regression for the model that includes only Exper is 125.9848.
-Referring to Scenario 14-8, the value of the coefficient of multiple determination is ________.

(Short Answer)
4.9/5
(33)
14-30 Introduction to Multiple Regression
-Referring to Scenario 14-7, the department head wants to test . The value of
the F-test statistic is ________.

(Short Answer)
4.9/5
(33)
SCENARIO 14-19
The marketing manager for a nationally franchised lawn service company would like to study the
characteristics that differentiate home owners who do and do not have a lawn service. A random
sample of 30 home owners located in a suburban area near a large city was selected; 11 did not have
a lawn service (code 0) and 19 had a lawn service (code 1). Additional information available
concerning these 30 home owners includes family income (Income, in thousands of dollars) and lawn
size (Lawn Size, in thousands of square feet).
The PHStat output is given below:
Binary Logistic Regression Predictor Coefficients SE Coef Z p -Value Intercept -7.8562 3.8224 -2.0553 0.0398 Income 0.0304 0.0133 2.2897 0.0220 Lawn Size 1.2804 0.6971 1.8368 0.0662 Deviance 25.3089
-Referring to Scenario 14-19, there is not enough evidence to conclude that
Income makes a significant contribution to the model in the presence of LawnSize at a 0.05 level
of significance.
(True/False)
4.9/5
(36)
SCENARIO 14-8 A financial analyst wanted to examine the relationship between salary (in ) and 2 variables: age and experience in the field Exper). He took a sample of 20 employees and obtained the following Microsoft Excel output:
Regression Statistics Multiple R 0.8535 R Square 0.7284 Adjusted R Square 0.6964 Standard Error 10.5630 Observations 20
Coefficients Standard Error t Stat P-value Lower 95\% O5\% Intercept 1.5740 9.2723 0.1698 0.8672 -17.9888 21.1368 Age 1.3045 0.1956 6.6678 0.0000 0.8917 1.7173 Exper -0.1478 0.1944 -0.7604 0.4574 -0.5580 0.2624
Also the sum of squares due to the regression for the model that includes only Age is 5022.0654 while the
sum of squares due to the regression for the model that includes only Exper is 125.9848.
-Referring to Scenario 14-8, the partial F test for : Variable does not significantly improve the model after variable has been included : Variable significantly improves the model after variable has been included has and degrees of freedom.

(Short Answer)
4.9/5
(32)
SCENARIO 14-17
Given below are results from the regression analysis where the dependent variable is the number of
weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age
of the worker (Age) and a dummy variable for management position (Manager: 1 = yes, 0 = no).
The results of the regression analysis are given below: \ Regression Statistics Multiple R 0.6391 R Square 0.4085 Adjusted R Square 0.3765 Standard Error 18.8929 Observations 40
Coefficients Standard Error t Stat P-value Intercept -0.2143 11.5796 -0.0185 0.9853 Age 1.4448 0.3160 4.5717 0.0000 Manager -22.5761 11.3488 -1.9893 0.0541
-Referring to Scenario 14-17, we can conclude definitively that, holding constant
the effect of the other independent variable, age has an impact on the mean number of weeks a
worker is unemployed due to a layoff at a 10% level of significance if all we have is the
information of the 95% confidence interval estimate for the effect of a one year increase in age on
the mean number of weeks a worker is unemployed due to a layoff.

(True/False)
4.7/5
(33)
SCENARIO 14-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by
gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel
output of this regression is partially reproduced below.
-Referring to Scenario 14-3, one economy in the sample had an aggregate consumption level of $4 billion, a GDP of $6 billion, and an aggregate price level of 200. What is the residual for this data
Point?

(Multiple Choice)
4.9/5
(38)
SCENARIO 14-10
You worked as an intern at We Always Win Car Insurance Company last summer. You notice that
individual car insurance premiums depend very much on the age of the individual and the number of
traffic tickets received by the individual. You performed a regression analysis in EXCEL and
obtained the following partial information: Regression Statistics Multiple R 0.8546 R Square 0.7303 Adjusted R Square 0.6853 Standard Error 226.7502 Observations 15
Coefficients Standard Error tStat P-value Lower 99\% Upper 99\% Intercept 821.2617 161.9391 5.0714 0.0003 326.6124 1315.9111 Age -1.4061 2.5988 -0.5411 0.5984 -9.3444 6.5321 Tickets 243.4401 43.2470 5.6291 0.0001 111.3406 375.5396
-Referring to Scenario 14-10, to test the significance of the multiple regression model, the value
of the test statistic is ______.

(Short Answer)
5.0/5
(45)
Showing 21 - 40 of 394
Filters
- Essay(0)
- Multiple Choice(0)
- Short Answer(0)
- True False(0)
- Matching(0)