Exam 8: Sequences, Series, and Probability

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

W Write the nn th term of the geometric sequence as a function of nn . a1=4,ak+1=2aka _ { 1 } = 4 , a _ { k + 1 } = 2 a _ { k }

(Multiple Choice)
4.7/5
(34)

Find the rational number representation of the repeating decimal. 0.1670 . \overline { 167 }

(Multiple Choice)
4.8/5
(35)

Find a formula for ana _ { n } for the arithmetic sequence. a4=10,a8=34a _ { 4 } = 10 , a _ { 8 } = 34

(Multiple Choice)
4.9/5
(42)

Find the sum of the finite geometric sequence. n=15(16)n1\sum _ { n = 1 } ^ { 5 } - \left( - \frac { 1 } { 6 } \right) ^ { n - 1 }

(Multiple Choice)
4.8/5
(46)

Determine whether the sequence is geometric. If so, find the common ratio. 1,2,5,8,- 1,2,5,8 , \ldots

(Multiple Choice)
4.9/5
(38)

Find a formula for ana _ { n } for the arithmetic sequence. a3=19,a13=99a _ { 3 } = 19 , a _ { 13 } = 99

(Multiple Choice)
4.7/5
(38)

Write an expression for the apparent nn th term of the sequence. (Assume that nn begins with 1.) 4,2,0,2,4- 4 , - 2,0,2,4

(Multiple Choice)
4.7/5
(39)

Use mathematical induction to prove the following for every positive integer nn . 1+6+36+216++6n1=6n151 + 6 + 36 + 216 + \ldots + 6 ^ { n - 1 } = \frac { 6 ^ { n } - 1 } { 5 }

(Essay)
4.9/5
(34)

Write the first five terms of the arithmetic sequence. a1=5,d=7a _ { 1 } = 5 , d = 7

(Multiple Choice)
4.9/5
(38)

Use mathematical induction to prove the following for every positive integer nn . 1+3+9+27++3n1=3n121 + 3 + 9 + 27 + \ldots + 3 ^ { n - 1 } = \frac { 3 ^ { n } - 1 } { 2 }

(Essay)
4.9/5
(32)

Find the indicated partial sum of the series. i=15(13)i\sum _ { i = 1 } ^ { \infty } 5 \left( - \frac { 1 } { 3 } \right) ^ { i } fourth partial sum

(Multiple Choice)
4.8/5
(47)

Find a formula for the nthn t h term of the following geometric sequence, then find the 4 th term of the sequence. 9,36,144,9,36,144 , \ldots

(Multiple Choice)
4.9/5
(40)

Simplify the factorial expression. 11!9!\frac { 11 ! } { 9 ! }

(Multiple Choice)
4.8/5
(35)

Find the sum using the formulas for the sums of powers of integers. n=19n3\sum _ { n = 1 } ^ { 9 } n ^ { 3 }

(Multiple Choice)
4.8/5
(37)

Find the probability for the experiment of selecting one card from a standard deck of 52 playing cards such that the card is not a red face card.

(Multiple Choice)
4.8/5
(38)

Use mathematical induction to prove the following inequality for all n2n \geq 2 . 12+14+16++12n>n2\frac { 1 } { \sqrt { 2 } } + \frac { 1 } { \sqrt { 4 } } + \frac { 1 } { \sqrt { 6 } } + \ldots + \frac { 1 } { \sqrt { 2 n } } > \frac { \sqrt { n } } { \sqrt { 2 } }

(Essay)
4.9/5
(31)

Determine whether the sequence is arithmetic. If so, find the common difference. 7,8,9,10,117,8,9,10,11

(Multiple Choice)
5.0/5
(42)

Use mathematical induction to prove the following for every positive integer nn . i=1n17i(i+1)(i+2)=17n(n+3)4(n+1)(n+2)\sum _ { i = 1 } ^ { n } \frac { 17 } { i ( i + 1 ) ( i + 2 ) } = \frac { 17 n ( n + 3 ) } { 4 ( n + 1 ) ( n + 2 ) }

(Essay)
4.9/5
(47)

Use the Binomial Theorem to expand the complex number. Simplify your result. (5+4i)4( 5 + 4 i ) ^ { 4 }

(Multiple Choice)
4.8/5
(35)

Find the sum of the infinite geometric series. n=04(15)n\sum _ { n = 0 } ^ { \infty } 4 \left( - \frac { 1 } { 5 } \right) ^ { n }

(Multiple Choice)
4.9/5
(41)
Showing 21 - 40 of 118
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)