Exam 8: Sequences, Series, and Probability

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Write the first five terms of the sequence. (Assume that nn begins with 1.) an=(1)n(n1)(n2)a _ { n } = ( - 1 ) ^ { n } ( n - 1 ) ( n - 2 )

(Multiple Choice)
4.7/5
(39)

Determine whether the sequence is arithmetic. If so, find the common difference. (Assume that nn begins with 1 .) an=6+4na _ { n } = 6 + 4 n

(Multiple Choice)
4.7/5
(27)

Find the sum of the infinite series. i=13(13)i\sum _ { i = 1 } ^ { \infty } 3 \left( \frac { 1 } { 3 } \right) ^ { i }

(Multiple Choice)
4.8/5
(41)

Calculate the binomial coefficient: (87)\left( \begin{array} { l } 8 \\ 7 \end{array} \right)

(Multiple Choice)
4.8/5
(33)

Use sigma notation to write the sum. 132+143++198\frac { 1 } { 3 \cdot 2 } + \frac { 1 } { 4 \cdot 3 } + \cdots + \frac { 1 } { 9 \cdot 8 }

(Multiple Choice)
4.9/5
(44)

Find the indicated sum. n=18n4\sum _ { n = 1 } ^ { 8 } n ^ { 4 }

(Multiple Choice)
4.8/5
(36)

Determine whether the sequence is geometric. If so, find the common ratio. 2,6,18,54,- 2 , - 6 , - 18 , - 54 , \ldots

(Multiple Choice)
4.8/5
(31)

Determine whether the sequence is geometric. If so, find the common ratio. 1,2,4,8,- 1 , - 2 , - 4 , - 8 , \ldots

(Multiple Choice)
4.9/5
(38)

Find the sum of the finite geometric sequence. n=162(23)n1\sum _ { n = 1 } ^ { 6 } 2 \left( - \frac { 2 } { 3 } \right) ^ { n - 1 }

(Multiple Choice)
5.0/5
(40)

Determine the number of ways a computer can randomly generate a prime integer between 10 and 20 .

(Multiple Choice)
4.8/5
(35)

Find Pk+1P _ { k + 1 } for the given PkP _ { k } . Pk=4k(k+1)P _ { k } = \frac { 4 } { k ( k + 1 ) }

(Multiple Choice)
4.9/5
(34)

Determine the sample space for the experiment. Two marbles are selected from marbles labeled A through E\mathrm { E } where the marbles are not replaced and the order of selection does not matter.

(Multiple Choice)
4.8/5
(37)

Find the rational number representation of the repeating decimal. 0.1570 . \overline { 157 }

(Multiple Choice)
4.8/5
(39)

Write the first five terms of the geometric sequence. a1=4,r=15a _ { 1 } = 4 , r = - \frac { 1 } { 5 }

(Multiple Choice)
4.9/5
(37)

Determine whether the sequence is arithmetic. If so, find the common difference. 3,7,11,15,19- 3 , - 7 , - 11 , - 15 , - 19

(Multiple Choice)
4.8/5
(34)

Find a formula for ana _ { n } for the arithmetic sequence. a4=13,a13=31a _ { 4 } = - 13 , a _ { 13 } = - 31

(Multiple Choice)
4.8/5
(29)

Use the Binomial Theorem to expand and simplify the expression. (x3/45)4\left( x ^ { 3 / 4 } - 5 \right) ^ { 4 }

(Multiple Choice)
4.7/5
(36)

Determine the sample space for the experiment. Four coins are flipped and the number of heads observed is recorded.

(Multiple Choice)
4.8/5
(32)

Find the indicated nn th term of the geometric sequence. 5 th term: a3=316,a9=365,536a _ { 3 } = - \frac { 3 } { 16 } , a _ { 9 } = - \frac { 3 } { 65,536 }

(Multiple Choice)
4.9/5
(36)

Write the first five terms of the arithmetic sequence. a5=29,a10=59a _ { 5 } = - 29 , a _ { 10 } = - 59

(Multiple Choice)
4.7/5
(36)
Showing 61 - 80 of 118
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)