Exam 8: Sequences, Series, and Probability

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Use mathematical induction to prove the following for every positive integer nn . i=1n11i(i+1)(i+2)=11n(n+3)4(n+1)(n+2)\sum _ { i = 1 } ^ { n } \frac { 11 } { i ( i + 1 ) ( i + 2 ) } = \frac { 11 n ( n + 3 ) } { 4 ( n + 1 ) ( n + 2 ) }

(Essay)
4.9/5
(44)

Determine the sample space for the experiment. Two marbles are selected from marbles labeled A through DD where the marbles are not replaced and the order of selection does not matter.

(Multiple Choice)
4.9/5
(26)

Write an expression for the apparent nn th term of the sequence. (Assume that nn begins with 1.) 5,2,1,4,7- 5 , - 2,1,4,7

(Multiple Choice)
4.7/5
(38)

Find the indicated nn th term of the geometric sequence. 4th term: 4,12,36,4 , - 12,36 , \ldots

(Multiple Choice)
4.8/5
(34)

Prove the inequality for the indicated integer values of nn . (98)n>n,n29\left( \frac { 9 } { 8 } \right) ^ { n } > n , n \geq 29

(Essay)
4.8/5
(33)

Find the sum. k=131k2+5\sum _ { k = 1 } ^ { 3 } \frac { 1 } { k ^ { 2 } + 5 }

(Multiple Choice)
4.8/5
(42)

The first two terms of the arithmetic sequence are given. Find the indicated term. The first two terms of the arithmetic sequence are given. Find the indicated term.

(Multiple Choice)
5.0/5
(39)

Use mathematical induction to prove the following for every positive integer nn . i=1n15(2i1)(2i+1)=15n2n+1\sum _ { i = 1 } ^ { n } \frac { 15 } { ( 2 i - 1 ) ( 2 i + 1 ) } = \frac { 15 n } { 2 n + 1 }

(Essay)
4.7/5
(32)

Find the number of distinguishable permutations of the group of letters. G,A,U,S,S\mathrm { G } , \mathrm { A } , \mathrm { U } , \mathrm { S } , \mathrm { S }

(Multiple Choice)
4.9/5
(35)

Find the sum of the integers from 1- 1 to 27 .

(Multiple Choice)
4.8/5
(40)

Solve for nn . 42n1P5=n+1P642 \cdot { } _ { n - 1 } P _ { 5 } = { } _ { n + 1 } P _ { 6 }

(Multiple Choice)
4.9/5
(40)

Use the Binomial Theorem to expand the complex number. Simplify your result. (2+5i)4( - 2 + 5 i ) ^ { 4 }

(Multiple Choice)
4.9/5
(39)

You are given the probability that an event will not happen. Find the probability that the event will happen. P(E)=59P \left( E ^ { \prime } \right) = \frac { 5 } { 9 }

(Multiple Choice)
4.9/5
(38)

Evaluate using a graphing utility: 15P6{ } _ { 15 } P _ { 6 }

(Multiple Choice)
4.9/5
(31)

Find the probability for the experiment of tossing a coin four times and getting at least two heads. Use the sample space Sequals HHHH HHHT HHTH HTHH THHH HHTT HTHT THHT THTH HTTH TTHH TTTH TTHT THTT HTTT TTTT

(Multiple Choice)
4.9/5
(31)

Use the Binomial Theorem to expand and simplify the expression. (w2)5( w - 2 ) ^ { 5 }

(Multiple Choice)
4.9/5
(44)

Use mathematical induction to prove the following for every positive integer nn . i=1n5(2i1)(2i+1)=5n2n+1\sum _ { i = 1 } ^ { n } \frac { 5 } { ( 2 i - 1 ) ( 2 i + 1 ) } = \frac { 5 n } { 2 n + 1 }

(Essay)
4.8/5
(44)

Use mathematical induction to prove the following equality. ln(2nx1x2xn)=ln(2x1)+ln(2x2)++ln(2xn)\ln \left( 2 ^ { n } x _ { 1 } x _ { 2 } \ldots x _ { n } \right) = \ln \left( 2 x _ { 1 } \right) + \ln \left( 2 x _ { 2 } \right) + \ldots + \ln \left( 2 x _ { n } \right) , where x1>0,x2>0,,xn>0x _ { 1 } > 0 , x _ { 2 } > 0 , \ldots , x _ { n } > 0

(Essay)
5.0/5
(40)

Determine whether the sequence is geometric. If so, find the common ratio. 2,2,6,10,2 , - 2 , - 6 , - 10 , \ldots

(Multiple Choice)
4.8/5
(38)

You are given the probability that an event will happen. Find the probability that the event will not happen. P(E)=0.33P ( E ) = 0.33

(Multiple Choice)
4.8/5
(45)
Showing 41 - 60 of 118
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)