Exam 8: Sequences, Series, and Probability

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the coefficient aa of the term in the expansion of the binomial. Binomial Term (2x-5y a

(Multiple Choice)
4.8/5
(37)

Use mathematical induction to prove the following inequality for all n1n \geq 1 . 15n14n15 ^ { n } \geq 14 n

(Essay)
4.8/5
(40)

Use mathematical induction to prove the following inequality for all n2n \geq 2 . 119+138+157++119n>n19\frac { 1 } { \sqrt { 19 } } + \frac { 1 } { \sqrt { 38 } } + \frac { 1 } { \sqrt { 57 } } + \ldots + \frac { 1 } { \sqrt { 19 n } } > \frac { \sqrt { n } } { \sqrt { 19 } }

(Essay)
4.8/5
(29)

Determine the sample space for the experiment. Three marbles are selected from marbles labeled A through D where the marbles are not replaced and the order of selection does not matter.

(Multiple Choice)
4.9/5
(41)

Use mathematical induction to prove the following inequality for all n2n \geq 2 . (3)n+2>932n(2)n+5( 3 ) ^ { n + 2 } > \frac { 9 } { 32 } n ( 2 ) ^ { n + 5 }

(Essay)
4.8/5
(38)

Use mathematical induction to prove the following inequality for all n2n \geq 2 . (3)n+3>272n(2)n+1( 3 ) ^ { n + 3 } > \frac { 27 } { 2 } n ( 2 ) ^ { n + 1 }

(Essay)
4.9/5
(43)

Use mathematical induction to prove the following for every positive integer nn . i=1n96i5=8n2(n+1)2(2n2+2n1)\sum _ { i = 1 } ^ { n } 96 i ^ { 5 } = 8 n ^ { 2 } ( n + 1 ) ^ { 2 } \left( 2 n ^ { 2 } + 2 n - 1 \right)

(Essay)
4.8/5
(45)

Find the coefficient aa of the term in the expansion of the binomial. Binomial Term (x-3y a

(Multiple Choice)
5.0/5
(36)

Find the sum of the following infinite geometric series. 10+98110+729100- 10 + 9 - \frac { 81 } { 10 } + \frac { 729 } { 100 } - \ldots

(Multiple Choice)
4.8/5
(32)

Use the first and second differences of the first five terms of the given sequence to determine whether the sequence has a linear model, a quadratic model, or neither. =0 =+8n

(Multiple Choice)
4.8/5
(44)

Expand the binomial by using Pascal's triangle to determine the coefficients. (5x4y)6( 5 x - 4 y ) ^ { 6 }

(Multiple Choice)
4.9/5
(39)

Expand the following expression in the difference quotient and simplify. f(x+h)f(x)h,h0.f(x)=52x\frac { f ( x + h ) - f ( x ) } { h } , h \neq 0 . f ( x ) = \frac { 5 } { 2 x }

(Multiple Choice)
4.8/5
(33)

Determine whether the sequence is geometric. If so, find the common ratio. 1,3,7,11,- 1,3,7,11 , \ldots

(Multiple Choice)
4.9/5
(36)

Use mathematical induction to prove the following for every positive integer nn . i=1n9i(i+1)(i+2)=9n(n+3)4(n+1)(n+2)\sum _ { i = 1 } ^ { n } \frac { 9 } { i ( i + 1 ) ( i + 2 ) } = \frac { 9 n ( n + 3 ) } { 4 ( n + 1 ) ( n + 2 ) }

(Essay)
4.9/5
(43)

Write the first five terms of the sequence defined recursively. Use the pattern to write the nn th term of the sequence as a function of nn . (Assume that nn begins with 1.) a1=21,ak+1=ak5a _ { 1 } = 21 , a _ { k + 1 } = a _ { k } - 5

(Multiple Choice)
4.9/5
(34)

Expand the binomial by using Pascal's triangle to determine the coefficients. (3x+2y)6( 3 x + 2 y ) ^ { 6 }

(Multiple Choice)
4.8/5
(34)

Find the specified nn th term in the expansion of the binomial. (Write the expansion in descending powers of xx .) (2x3y)8,n=5( 2 x - 3 y ) ^ { 8 } , n = 5

(Multiple Choice)
4.7/5
(35)

Find a quadratic model for the sequence with the indicated terms. a0=7,a2=3,a5=12a _ { 0 } = 7 , a _ { 2 } = 3 , a _ { 5 } = 12

(Multiple Choice)
4.8/5
(38)

Use mathematical induction to prove the formula for every positive integer nn . Show all your work. 7+10+13+16++(3n+4)=n2(3n+11)7 + 10 + 13 + 16 + \ldots + ( 3 n + 4 ) = \frac { n } { 2 } ( 3 n + 11 )

(Essay)
4.8/5
(43)

Find the number of distinguishable permutations of the group of letters. G, A, U, S, S

(Multiple Choice)
4.9/5
(36)
Showing 81 - 100 of 118
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)