Exam 8: Sequences, Series, and Probability

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Use mathematical induction to prove the following inequality for all n2n \geq 2 . 123+146+169++123n>n23\frac { 1 } { \sqrt { 23 } } + \frac { 1 } { \sqrt { 46 } } + \frac { 1 } { \sqrt { 69 } } + \ldots + \frac { 1 } { \sqrt { 23 n } } > \frac { \sqrt { n } } { \sqrt { 23 } }

(Essay)
4.9/5
(42)

Find the specified nn th term in the expansion of the binomial. (Write the expansion in descending powers of xx .) (2x+3y)6,n=3( 2 x + 3 y ) ^ { 6 } , n = 3

(Multiple Choice)
4.7/5
(29)

Find the indicated partial sum of the series. i=15(13)i\sum _ { i = 1 } ^ { \infty } 5 \left( \frac { 1 } { 3 } \right) ^ { i } fourth partial sum A) 581\frac { 5 } { 81 } B) 60581\frac { 605 } { 81 } C) 20081\frac { 200 } { 81 } D) 6581\frac { 65 } { 81 } E) 20581\frac { 205 } { 81 } Use mathematical induction to prove the property for all positive integers nn . [an]3=a3n\left[ a ^ { n } \right] ^ { 3 } = a ^ { 3 n }

(Essay)
4.9/5
(42)

Use mathematical induction to prove the following for every positive integer nn . i=1n36i5=3n2(n+1)2(2n2+2n1)\sum _ { i = 1 } ^ { n } 36 i ^ { 5 } = 3 n ^ { 2 } ( n + 1 ) ^ { 2 } \left( 2 n ^ { 2 } + 2 n - 1 \right)

(Essay)
4.9/5
(45)

Determine whether the sequence is arithmetic. If so, find the common difference. (Assume that nn begins with 1.) an=(16)na _ { n } = - \left( \frac { 1 } { 6 } \right) ^ { n }

(Multiple Choice)
4.8/5
(33)

Write the first five terms of the geometric sequence. a1=5,r=19a _ { 1 } = - 5 , r = - \frac { 1 } { 9 }

(Multiple Choice)
4.9/5
(38)

Use mathematical induction to prove that 80 is a factor of 28n+2+162 ^ { 8 n + 2 } + 16 for all positive nn .

(Essay)
4.8/5
(36)

Find the sum of the integers from 34- 34 to 12- 12 .

(Multiple Choice)
4.8/5
(42)

Find the coefficient aa of the term in the expansion of the binomial. Binomial     (4x+3y)6( 4 x + 3 y ) ^ { 6 } Term     ax2y4a x ^ { 2 } y ^ { 4 }

(Multiple Choice)
4.7/5
(42)

Use summation notation to write the sum. 26+184862 - 6 + 18 - \ldots - 486

(Multiple Choice)
5.0/5
(41)

How many 3 -digit numbers can be formed if the leading digit cannot be zero and repeats are not allowed?

(Multiple Choice)
4.8/5
(38)

Find the sum. i=14(i4)\sum _ { i = 1 } ^ { 4 } ( - i - 4 )

(Multiple Choice)
4.9/5
(43)

Find a formula for the nthn t h term of the following geometric sequence, then find the 4 th term of the sequence. 7,28,112,7,28,112 , \ldots

(Multiple Choice)
4.9/5
(38)

Given the sequence 4+1213,4+1920,4+2627,4+3334,4+4041,4 + \frac { 12 } { 13 } , 4 + \frac { 19 } { 20 } , 4 + \frac { 26 } { 27 } , 4 + \frac { 33 } { 34 } , 4 + \frac { 40 } { 41 } , \ldots , write an expression for the apparent nn th term assuming nn begins with 1 .

(Multiple Choice)
4.8/5
(40)

Find the indicated nn th partial sum of the arithmetic sequence. 3.6,5.7,7.8,9.9,,n=603.6,5.7,7.8,9.9 , \ldots , n = 60

(Multiple Choice)
4.8/5
(37)

Write the first five terms of the sequence. (Assume that nn begins with 0 .) an=3n(n+1)!a _ { n } = \frac { 3 ^ { n } } { ( n + 1 ) ! }

(Multiple Choice)
4.8/5
(33)

Determine whether the sequence is geometric. If so, find the common ratio. 3,6,12,24,3,6,12,24 , \ldots

(Multiple Choice)
4.9/5
(29)

Calculate the binomial coefficient: (116)\left( \begin{array} { c } 11 \\ 6 \end{array} \right)

(Multiple Choice)
4.8/5
(35)
Showing 101 - 118 of 118
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)