Exam 2: A: Basic Structures: Sets, Functions, Sequences, Sums, Matrices

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

determine whether the statement is true or false. -  If A=(1352), then A2=(19254)\text { If } \mathbf { A } = \left( \begin{array} { c c } 1 & 3 \\- 5 & 2\end{array} \right) \text {, then } \mathbf { A } ^ { 2 } = \left( \begin{array} { c c } 1 & 9 \\25 & 4\end{array} \right)

(True/False)
4.8/5
(43)

Prove that AB=AˉBˉA \cap B = \bar { A } \cup \bar { B } giving a proof using logical equivalence.

(Essay)
4.8/5
(35)

mark each statement TRUE or FALSE. Assume that the statement applies to all sets. - A(BC)=(AB)(AC)A \cap ( B \cup C ) = ( A \cup B ) \cap ( A \cup C )

(True/False)
4.9/5
(29)

determine whether the set is finite or infinite. If the set is finite, find its size. -{1, 10, 100, 1000, . . .}

(Short Answer)
4.9/5
(34)

describe each sequence recursively. Include initial conditions and assume that the sequences begin with a1a _ { 1 } . -an = 1 + 2 + 3 + · · · + n

(Short Answer)
4.7/5
(36)

Suppose A = (3524)\left( \begin{array} { l l } 3 & 5 \\2 & 4\end{array} \right) and C = (2106)\left( \begin{array} { l l } 2 & 1 \\0 & 6\end{array} \right) . Find a matrix B such that AB = C or prove that no such matrix exists.

(Short Answer)
4.7/5
(35)

suppose the following are fuzzy sets: F=\{0.7 Ann ,0.1 Bill ,0.8 Fran ,0.3 Olive ,0.5 Tom \}, R=\{0.4 Ann ,0.9 Bill ,0.9 Fran ,0.6 Olive ,0.7 Tom \} -  Find FR\text { Find } F \cup R \text {. }

(Short Answer)
4.9/5
(37)

find the inverse of the function f or else explain why the function has no inverse. - f:RR, where f(x)=3x5f : \mathbf { R } \rightarrow \mathbf { R } \text {, where } f ( x ) = 3 x - 5

(Short Answer)
4.8/5
(38)

determine whether the statement is true or false. -  If A=(3512), then A1=(2513)\text { If } \mathbf { A } = \left( \begin{array} { l l } 3 & 5 \\1 & 2\end{array} \right) , \text { then } \mathbf { A } ^ { - 1 } = \left( \begin{array} { c c } 2 & 5 \\1 & - 3\end{array} \right)

(True/False)
4.9/5
(37)

Suppose B = (3524)\left( \begin{array} { l l } 3 & 5 \\2 & 4\end{array} \right) and C = (2106)\left( \begin{array} { l l } 2 & 1 \\0 & 6\end{array} \right) . Find a matrix A such that AB= C or prove that no such matrix exists.

(Short Answer)
4.8/5
(33)

Prove or disprove: For all positive real numbers x and y, xyxy\lfloor x · y\rfloor ≤ \lfloor x \rfloor · \lfloor y \rfloor .

(True/False)
4.9/5
(35)

determine whether the set is finite or infinite. If the set is finite, find its size. - {xxZ and x2<10}\left\{ x \mid x \in \mathbf { Z } \text { and } x ^ { 2 } < 10 \right\}

(Short Answer)
4.8/5
(30)

Prove or disprove A(BC)=(AB)CA \oplus ( B \oplus C ) = ( A \oplus B ) \oplus C

(True/False)
4.8/5
(40)

Suppose f : Z → Z has the rule f(n) = 3n − 1. Determine whether f is onto Z.

(Short Answer)
4.7/5
(34)

determine whether the rule describes a function with the given domain and codomain. - G:QQ, where G(p/q)=qG : \mathbf { Q } \rightarrow \mathbf { Q } \text {, where } G ( p / q ) = q

(Short Answer)
4.9/5
(35)

suppose g: A → B and f : B → C where A = {1, 2, 3, 4}, B = {a, b, c}, C = {2, 8, 10}, and g and f are defined by g = f(1, b), (2, a), (3, b), (4, a)g and f = {(a, 8), (b, 10); (c, 2)}. -  Find f1\text { Find } f ^ { - 1 }

(Short Answer)
4.8/5
(37)

suppose A = {a, b, c} and B = {b, {c}}. Mark the statement TRUE or FALSE. -suppose A = {a, b, c} and B = {b, {c}}. Mark the statement TRUE or FALSE. -

(True/False)
4.9/5
(35)

determine whether the given set is the power set of some set. If the set is a power set, give the set of which it is a power set. - { ,{a,}}\{ \emptyset \ , \{ a , \emptyset \} \}

(Short Answer)
4.8/5
(43)

mark each statement TRUE or FALSE. Assume that the statement applies to all sets. -(A − C) − (B − C) = A − B

(True/False)
4.9/5
(33)

Find the sum 1 − 1/2 + 1/4 − 1/8 + 1/16 − · · · .

(Short Answer)
4.9/5
(43)
Showing 61 - 80 of 210
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)