Exam 4: A: Number Theory and Cryptography

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Prove or disprove: For all integers a,b,c, if ac and bc, then (a+b)ca , b , c \text {, if } a \mid c \text { and } b \mid c \text {, then } ( a + b ) \mid c \text {. }

(True/False)
4.7/5
(36)

determine whether each of the following "theorems" is true or false. Assume that a, b, c, d, and m are integers with m > 1. -  If ab(modm), then 2a2b(modm)\text { If } a \equiv b ( \bmod m ) , \text { then } 2 a \equiv 2 b ( \bmod m )

(True/False)
4.8/5
(43)

Encrypt the message KING using the RSA system with n = 43 · 61 and e = 13, translating each letter into integers (A = 00, B=01, . . . ) and grouping together pairs of integers.

(Short Answer)
4.8/5
(34)

suppose that a and b are integers, a ≡ 4 (mod 7), and b ≡ 6 (mod 7). Find the integer c with 0 ≤ c ≤ 6 such that - c5b(mod7)c \equiv 5 b ( \bmod 7 )

(Short Answer)
4.8/5
(37)

find the sum and product of each of these pairs of numbers. Express your answer as a binary expansion. - (101011)2,(1101011)2( 101011 ) _ { 2 } , ( 1101011 ) _ { 2 }

(Short Answer)
4.9/5
(39)

Find the prime factorization of 1,024.

(Short Answer)
4.9/5
(34)

determine whether each of the following "theorems" is true or false. Assume that a, b, c, d, and m are integers with m > 1. -  If ab(modm) and cd(modm), then acb+d(modm)\text { If } a \equiv b ( \bmod m ) \text { and } c \equiv d ( \bmod m ) \text {, then } a c \equiv b + d ( \bmod m )

(True/False)
4.9/5
(35)

Show that 7 is a primitive root of 13.

(Essay)
4.9/5
(25)

Decrypt the message EARLYL which is the ciphertext produced by encrypting a plaintext message using the transposition cipher with blocks of three letters and the permutation σ\sigma of {1,2,3} defined by σ\sigma (1)= 3 , σ\sigma (2)=1 , and σ\sigma (3)=2 .

(Short Answer)
4.7/5
(37)

find each of these values -(123 mod 19 · 342 mod 19) mod 19

(Short Answer)
4.8/5
(28)

Prove or disprove: For all integers a,b, if ab and ba, then a=ba , b \text {, if } a \mid b \text { and } b \mid a \text {, then } a = b \text {. }

(True/False)
4.9/5
(29)

determine whether each of the following "theorems" is true or false. Assume that a, b, c, d, and m are integers with m > 1. -  If ab(modm), and ac(modm), then ab+c(modm)\text { If } a \equiv b ( \bmod m ) \text {, and } a \equiv c ( \bmod m ) \text {, then } a \equiv b + c ( \bmod m ) \text {. }

(True/False)
4.8/5
(46)

Applying the division algorithm with a = −41 and d = 6 yields what value of r?

(Short Answer)
4.8/5
(32)

Prove or disprove: For all integers a,b,c, if ac and bc, then abc2a , b , c , \text { if } a \mid c \text { and } b \mid c , \text { then } a b \mid c ^ { 2 }

(True/False)
4.9/5
(40)

Solve the linear congruence 2x ≡ 5 (mod 9).

(Short Answer)
4.9/5
(31)

Find the sequence of pseudorandom numbers generated by the power generator xn+1=xn3x _ { n + 1 } = x _ { n } ^ { 3 } and seed x0=3x _ { 0 } = 3

(Short Answer)
4.8/5
(37)

Convert (1 1101)2 to base 10 .

(Short Answer)
4.7/5
(36)

Find gcd(2 (289,2346)\left( 2 ^ { 89 } , 2 ^ { 346 } \right) by directly finding the largest divisor of both numbers.

(Short Answer)
4.9/5
(33)

Find 289 mod 17.

(Short Answer)
4.7/5
(21)

Prove or disprove: if p and q are prime numbers, then pq+1 is prime.

(True/False)
4.8/5
(38)
Showing 21 - 40 of 149
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)