Exam 6: Matrices and Determinants

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the products AB and BA to determine whether B is the multiplicative inverse of A. - A=[2011111112100011],B=[2002210322152213]A = \left[ \begin{array} { r r r r } 2 & 0 & 1 & 1 \\1 & 1 & - 1 & - 1 \\- 1 & - 2 & 1 & 0 \\0 & 0 & 1 & 1\end{array} \right] , \quad B = \left[ \begin{array} { r r r r } 2 & 0 & 0 & - 2 \\- 2 & 1 & 0 & 3 \\- 2 & 2 & 1 & 5 \\2 & - 2 & - 1 & - 3\end{array} \right]

(Multiple Choice)
4.9/5
(29)

Encode and Decode Messages Encode or decode the given message, as requested, numbering the letters of the alphabet 1 through 26 in their usual order. -Use the coding matrix A=[2153]A = \left[ \begin{array} { l l } 2 & 1 \\ 5 & 3 \end{array} \right] and its inverse A1=[3152]A ^ { - 1 } = \left[ \begin{array} { r r } 3 & - 1 \\ - 5 & 2 \end{array} \right] to decode the cryptogram [962517]\left[ \begin{array} { r r } 9 & 6 \\ 25 & 17 \end{array} \right] .

(Multiple Choice)
4.9/5
(31)

Write a system of linear equations in three variables, and then use matrices to solve the system. -There were approximately 100,000 vehicles sold at a particular dealership last year. The dealer tracks sales by age group for marketing purposes. The percentage of 36- to 59-year-old buyers and the percentage of Buyers 60 and older combined exceeds the percentage of buyers 35 and younger by 38%. If the percentage Of buyers in the oldest group is doubled, it is 24% less than the percentage of users in the middle group. Find the percentage of buyers in each of the three age groups.

(Multiple Choice)
4.8/5
(41)

Perform the matrix row operation (or operations)and write the new matrix. - open bracket 1 1 -1 1 2 0 -1 1 -3 0 5 0 -4 -5 5 -2 4 0 2 -1 close bracket -4+ 2+

(Multiple Choice)
4.9/5
(34)

Solve the system using the inverse that is given for the coefficient matrix. - x+2y+3z=3x + 2 y + 3 z = - 3 x+y+z=12x + y + z = 12 2x+2y+z=62 x + 2 y + z = 6\quad The inverse of [123111221]\left[ \begin{array} { l l l } 1 & 2 & 3 \\ 1 & 1 & 1 \\ 2 & 2 & 1 \end{array} \right] is [141152021]\left[ \begin{array} { r r r } - 1 & 4 & - 1 \\ 1 & - 5 & 2 \\ 0 & 2 & - 1 \end{array} \right]

(Multiple Choice)
4.9/5
(37)

Find the products AB and BA to determine whether B is the multiplicative inverse of A. - A=[100110111]A = \left[ \begin{array} { r r r } 1 & 0 & 0 \\- 1 & 1 & 0 \\1 & 1 & 1\end{array} \right]

(Multiple Choice)
4.7/5
(34)

Solve the matrix equation for X. -Let A=[140266]A = \left[ \begin{array} { r r } 1 & 4 \\ 0 & - 2 \\ 6 & - 6 \end{array} \right] and B=[861405];BX=3AB = \left[ \begin{array} { r r } 8 & - 6 \\ - 1 & 4 \\ 0 & 5 \end{array} \right] ; \quad B - X = 3 A

(Multiple Choice)
4.8/5
(26)

Apply Gaussian Elimination to Systems with More Variables than Equations Use Gaussian elimination to find the complete solution to the system of equations, or state that none exists. - x+y+z=7 x-y+2z=7

(Multiple Choice)
4.9/5
(39)

Solve the matrix equation for X. -Let A=[514500154]\mathrm { A } = \left[ \begin{array} { r r r } 5 & 1 & - 4 \\ 5 & 0 & 0 \\ 1 & - 5 & 4 \end{array} \right] and B=[154011505];4 B4 A=X\mathrm { B } = \left[ \begin{array} { r r r } - 1 & - 5 & - 4 \\ 0 & 1 & 1 \\ 5 & 0 & 5 \end{array} \right] ; \quad 4 \mathrm {~B} - 4 \mathrm {~A} = \mathrm { X }

(Multiple Choice)
5.0/5
(33)

Use Matrices and Gaussian Elimination to Solve Systems Solve the system of equations using matrices. Use Gaussian elimination with back-substitution. - x+y+z =-5 x-y+4z =-13 4x+y+z =-2

(Multiple Choice)
4.9/5
(27)

Use Cramer's rule to solve the system. - 11+3=1 5+2=4

(Multiple Choice)
4.8/5
(32)

Find the products AB and BA to determine whether B is the multiplicative inverse of A. - A=[0355]A = \left[ \begin{array} { r r } 0 & - 3 \\- 5 & - 5\end{array} \right]

(Multiple Choice)
4.9/5
(39)

Use Cramer's rule to solve the system. - 6x+5y=26 x + 5 y = 2 5x+y=115 x + y = - 11

(Multiple Choice)
4.8/5
(38)

Apply Gaussian Elimination to Systems Without Unique Solutions Use Gaussian elimination to find the complete solution to the system of equations, or state that none exists. - \[\begin{array} { l } x - y + z - w = 10 \\ \quad - 2 x + 3 y + 5 w = - 28 \\ x + 2 y + 8 z + 3 w = - 10 \\ x - 4 y - 6 z - 5 w = 30 \\

(Multiple Choice)
4.7/5
(32)

Use Matrices and Gaussian Elimination to Solve Systems Solve the system of equations using matrices. Use Gaussian elimination with back-substitution. - x-y+4z =20 5x+z =4 x+3y+z =-8

(Multiple Choice)
4.9/5
(33)

Evaluate the determinant. - 17110107\left| \begin{array} { c c } \frac { 1 } { 7 } & - \frac { 1 } { 10 } \\ 10 & 7 \end{array} \right|

(Multiple Choice)
4.9/5
(36)

Find the product AB, if possible. - A=[277595],B=[721] A=\left[\begin{array}{rrr}-2 & 7 & -7 \\ 5 & 9 & -5\end{array}\right], B=\left[\begin{array}{r}7 \\ -2 \\ -1\end{array}\right]

(Multiple Choice)
4.8/5
(30)

Use Cramer's rule to solve the system. - 2x=19-3y 5y=-11+2x

(Multiple Choice)
4.9/5
(36)

Apply Gaussian Elimination to Systems Without Unique Solutions Use Gaussian elimination to find the complete solution to the system of equations, or state that none exists. - x+y+z+w= 7 3x-2z+5w= 11 -4x+3y+w= 4 -x-y-z-w= 6

(Multiple Choice)
4.8/5
(29)

Evaluate the determinant. - 0773025657946224\left| \begin{array} { l l l l } 0 & 7 & 7 & 3 \\0 & 2 & 5 & 6 \\5 & 7 & 9 & 4 \\6 & 2 & 2 & 4\end{array} \right|

(Multiple Choice)
4.8/5
(35)
Showing 21 - 40 of 152
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)