Exam 6: Matrices and Determinants

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use Cramer's rule to solve the system. - 6x-7y-z =-53 x-8y+9z =19 -3x+y+z =11

(Multiple Choice)
4.8/5
(35)

Use Cramer's rule to solve the system. - 2x+5y=43 2x+2y=22

(Multiple Choice)
4.8/5
(33)

Solve the problem. -Let A=[7241401253]\mathrm { A } = \left[ \begin{array} { r r r } 7 & 2 & 4 \\ 14 & 0 & - 1 \\ 2 & 5 & 3 \end{array} \right] and B=[521201365]\mathrm { B } = \left[ \begin{array} { r r r } 5 & - 2 & 1 \\ 2 & 0 & 1 \\ - 3 & 6 & - 5 \end{array} \right] . Find A+B\mathrm { A } + \mathrm { B } .

(Multiple Choice)
4.8/5
(33)

Solve the problem. -Let A=[354]A = \left[ \begin{array} { r } 3 \\ - 5 \\ - 4 \end{array} \right] and B=[565]B = \left[ \begin{array} { r } - 5 \\ 6 \\ 5 \end{array} \right] . Find A+BA + B .

(Multiple Choice)
5.0/5
(30)

Solve the matrix equation for X. -Let A=[531141]A = \left[ \begin{array} { r r } 5 & - 3 \\ 1 & 1 \\ 4 & 1 \end{array} \right] and B=[373663];XB=AB = \left[ \begin{array} { l l } - 3 & - 7 \\ - 3 & - 6 \\ - 6 & - 3 \end{array} \right] ; \quad X - B = A

(Multiple Choice)
4.9/5
(37)

Encode and Decode Messages Encode or decode the given message, as requested, numbering the letters of the alphabet 1 through 26 in their usual order. -Use the coding matrix A=[1325]\mathrm { A } = \left[ \begin{array} { r r } - 1 & - 3 \\ 2 & 5 \end{array} \right] to encode the message CARE.

(Multiple Choice)
4.7/5
(36)

Perform the matrix row operation (or operations)and write the new matrix. - [363033361133027421]13R1\left[ \begin{array} { r r r | r } 36 & 30 & 33 & - 36 \\ 1 & 13 & - 3 & 0 \\ 2 & - 7 & 4 & 21 \end{array} \right] \frac { 1 } { 3 } \mathrm { R } _ { 1 }

(Multiple Choice)
4.8/5
(39)

Use Matrices and Gauss-Jordan Elimination to Solve Systems Solve the system of equations using matrices. Use Gauss-Jordan elimination. - -4x-y-3z=-39 7x+8y-4z=35 3x-2y+z=-4

(Multiple Choice)
5.0/5
(38)

Apply Gaussian Elimination to Systems Without Unique Solutions Use Gaussian elimination to find the complete solution to the system of equations, or state that none exists. - x+y+z =9 2x-3y+4z =7 x-4y+3z =-2

(Multiple Choice)
4.9/5
(35)

Use Inverses to Solve Matrix Equations Write the linear system as a matrix equation in the form AX = B, where A is the coefficient matrix and B is the constant matrix. - [73413][xy]=[1119]\left[ \begin{array} { r r } 7 & 3 \\ 4 & 13 \end{array} \right] \left[ \begin{array} { l } x \\ y \end{array} \right] = \left[ \begin{array} { l } 11 \\ 19 \end{array} \right]

(Multiple Choice)
4.7/5
(41)

Find the products AB and BA to determine whether B is the multiplicative inverse of A. - A=[1206]A = \left[ \begin{array} { r r } 1 & 2 \\0 & - 6\end{array} \right]

(Multiple Choice)
4.9/5
(42)

Understand What is Meant by Equal Matrices Find values for the variables so that the matrices are equal. - [xy+57z10]=[3115610]\left[ \begin{array} { r r } x & y + 5 \\7 z & 10\end{array} \right] = \left[ \begin{array} { c c } 3 & 11 \\56 & 10\end{array} \right]

(Multiple Choice)
4.9/5
(32)

Determinants are used to show that three points lie on the same line (are collinear). If -The equation of a line passing through two distinct points (x1, y1)and (x2, y2)is given by xy1x2y21x3y31=0. Use the determinant to write an equation for the line passing through (6,9) and \left|\begin{array}{lll}x & y & 1 \\x_{2} & y 2 & 1 \\x_{3} & y_{3} & 1\end{array}\right|=0 . \text { Use the determinant to write an equation for the line passing through }(-6,9) \text { and } (8,3)( - 8,3 ) . Express the line's equation in standard form.

(Multiple Choice)
4.9/5
(42)

Solve the problem. -Let A=[3325]\mathrm { A } = \left[ \begin{array} { l l } 3 & 3 \\ 2 & 5 \end{array} \right] and B=[0416]\mathrm { B } = \left[ \begin{array} { r r } 0 & 4 \\ - 1 & 6 \end{array} \right] . Find 2 A+B2 \mathrm {~A} + \mathrm { B } .

(Multiple Choice)
4.8/5
(37)

Write the system of linear equations represented by the augmented matrix. Use x, y, z, and, if necessary, w for the variables. Then use back-substitution to find the solution. - [152192013280014]\left[ \begin{array} { r r r | r } 1 & \frac { 5 } { 2 } & 1 & \frac { 9 } { 2 } \\ 0 & 1 & \frac { 3 } { 2 } & 8 \\ 0 & 0 & 1 & - 4 \end{array} \right]

(Multiple Choice)
4.8/5
(39)

Find the product AB, if possible. - A=[944491],B=[139]A = \left[ \begin{array} { l l l } - 9 & - 4 & - 4 \\ - 4 & - 9 & - 1 \end{array} \right] , B = \left[ \begin{array} { l } - 1 \\ - 3 \\ - 9 \end{array} \right]

(Multiple Choice)
4.9/5
(33)

Model Applied Situations with Matrix Operations The \perp shape in the figure below is shown using 9 pixels in a 3×33 \times 3 grid. The color levels are given to the right of the figure. Use the matrix [131131333]\left[ \begin{array} { l l l } 1 & 3 & 1 \\ 1 & 3 & 1 \\ 3 & 3 & 3 \end{array} \right] that represents a digital photograph of the \perp shape to solve the problem.  Model Applied Situations with Matrix Operations  The  \perp  shape in the figure below is shown using 9 pixels in a  3 \times 3  grid. The color levels are given to the right of the figure. Use the matrix  \left[ \begin{array} { l l l } 1 & 3 & 1 \\ 1 & 3 & 1 \\ 3 & 3 & 3 \end{array} \right]  that represents a digital photograph of the  \perp  shape to solve the problem.   -Using the same color levels from the instructions, write a 3 × 3 matrix A that represents the letter L in dark grey on a white background. Then find a 3 × 3 matrix B so that A + B lightens only the letter L from dark Grey to light grey.  -Using the same color levels from the instructions, write a 3 × 3 matrix A that represents the letter L in dark grey on a white background. Then find a 3 × 3 matrix B so that A + B lightens only the letter L from dark Grey to light grey.

(Multiple Choice)
4.8/5
(36)

Evaluate the determinant. - 444401305\left| \begin{array} { r r r } - 4 & 4 & - 4 \\- 4 & 0 & - 1 \\3 & 0 & 5\end{array} \right|

(Multiple Choice)
4.8/5
(32)

Give the order of the matrix, and identify the given element of the matrix. - [01571375e514π672171368215];a34\left[ \begin{array} { c c c c c } 0 & - 15 & - 7 & 13 & 7 \\5 & - e & - 5 & 14 & \pi \\- 6 & 7 & 2 & 1 & - 7 \\\frac { 1 } { 3 } & - 6 & - 8 & 2 & 15\end{array} \right] ; a _ { 34 }

(Multiple Choice)
4.8/5
(38)

Model Applied Situations with Matrix Operations The \perp shape in the figure below is shown using 9 pixels in a 3×33 \times 3 grid. The color levels are given to the right of the figure. Use the matrix [131131333]\left[ \begin{array} { l l l } 1 & 3 & 1 \\ 1 & 3 & 1 \\ 3 & 3 & 3 \end{array} \right] that represents a digital photograph of the \perp shape to solve the problem.  Model Applied Situations with Matrix Operations  The  \perp  shape in the figure below is shown using 9 pixels in a  3 \times 3  grid. The color levels are given to the right of the figure. Use the matrix  \left[ \begin{array} { l l l } 1 & 3 & 1 \\ 1 & 3 & 1 \\ 3 & 3 & 3 \end{array} \right]  that represents a digital photograph of the  \perp  shape to solve the problem.   -Adjust the contrast by changing the black to white and the light grey to dark grey. Use matrix addition to accomplish this.  -Adjust the contrast by changing the black to white and the light grey to dark grey. Use matrix addition to accomplish this.

(Multiple Choice)
4.9/5
(33)
Showing 101 - 120 of 152
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)