Exam 6: Matrices and Determinants

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the products AB and BA to determine whether B is the multiplicative inverse of A. - A=[1200012000190001]A = \left[ \begin{array} { r r r r } 1 & - 2 & 0 & 0 \\0 & 1 & - 2 & 0 \\0 & 0 & 1 & 9 \\0 & 0 & 0 & 1\end{array} \right]

(Multiple Choice)
4.8/5
(25)

Evaluate the determinant. - 123255123\left| \begin{array} { l l l } 1 & 2 & 3 \\ 2 & 5 & 5 \\ 1 & 2 & 3 \end{array} \right|

(Multiple Choice)
4.9/5
(34)

Evaluate the determinant. - 161479115\left| \begin{array} { c c } \frac { 1 } { 6 } & \frac { 1 } { 4 } \\ - \frac { 7 } { 9 } & \frac { 11 } { 5 } \end{array} \right|

(Multiple Choice)
5.0/5
(36)

Evaluate the determinant. - 2213\left| \begin{array} { l l } 2 & 2 \\ 1 & 3 \end{array} \right|

(Multiple Choice)
4.8/5
(26)

Write a system of linear equations in three variables, and then use matrices to solve the system. -A ceramics workshop makes wreaths, trees, and sleighs for sale at Christmas. A wreath takes 3 hours to prepare, 2 hours to paint, and 10 hours to fire. A tree takes 15 hours to prepare, 3 hours to paint, and 4 Hours to fire. A sleigh takes 4 hours to prepare, 16 hours to paint, and 7 hours to fire. If the workshop has 93 hours for prep time, 74 hours for painting, and 107 hours for firing, how many of each can be made?

(Multiple Choice)
4.9/5
(29)

Perform the matrix row operation (or operations)and write the new matrix. - [141350331221]3R1+R2\left[ \begin{array} { r r r | r } 1 & - 4 & 1 & 3 \\ - 5 & 0 & 3 & - 3 \\ - 1 & 2 & - 2 & - 1 \end{array} \right] - 3 R _ { 1 } + R _ { 2 }

(Multiple Choice)
4.7/5
(38)

Use Matrices and Gauss-Jordan Elimination to Solve Systems Solve the system of equations using matrices. Use Gauss-Jordan elimination. - x=6-y-z x-y+3z=-6 2x+y=8-z

(Multiple Choice)
4.8/5
(32)

Evaluate the determinant. - 215265155\left| \begin{array} { l l l } 2 & 1 & 5 \\ 2 & 6 & 5 \\ 1 & 5 & 5 \end{array} \right|

(Multiple Choice)
4.8/5
(35)

Find the product AB, if possible. - A=[2332],B=[2013]\mathrm { A } = \left[ \begin{array} { r r } - 2 & 3 \\ 3 & 2 \end{array} \right] , \mathrm { B } = \left[ \begin{array} { l l } - 2 & 0 \\ - 1 & 3 \end{array} \right]

(Multiple Choice)
4.9/5
(37)

Use Inverses to Solve Matrix Equations Write the linear system as a matrix equation in the form AX = B, where A is the coefficient matrix and B is the constant matrix. - [8236][xy]=[69]\left[ \begin{array} { r r } 8 & 2 \\3 & - 6\end{array} \right] \left[ \begin{array} { l } x \\y\end{array} \right] = \left[ \begin{array} { l } 6 \\9\end{array} \right]

(Multiple Choice)
4.8/5
(33)

Find the products AB and BA to determine whether B is the multiplicative inverse of A. - A=[4340]\mathrm { A } = \left[ \begin{array} { r r } 4 & - 3 \\ - 4 & 0 \end{array} \right]

(Multiple Choice)
4.8/5
(30)

Encode and Decode Messages Encode or decode the given message, as requested, numbering the letters of the alphabet 1 through 26 in their usual order. -Use the coding matrix A=[3725]A = \left[ \begin{array} { l l } 3 & 7 \\ 2 & 5 \end{array} \right] to encode the message LIFE.

(Multiple Choice)
4.8/5
(35)
Showing 141 - 152 of 152
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)