Exam 6: Matrices and Determinants

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Write a system of linear equations in three variables, and then use matrices to solve the system. -Ron attends a cocktail party (with his graphing calculator in his pocket). He wants to limit his food intake to 131 g protein, 107 g fat, and 165 g carbohydrate. According to the health conscious hostess, the Marinated mushroom caps have 3 g protein, 5 g fat, and 9 g carbohydrate; the spicy meatballs have 14 g Protein, 7 g fat, and 15 g carbohydrate; and the deviled eggs have 13 g protein, 15 g fat, and 6 g Carbohydrate. How many of each snack can he eat to obtain his goal?

(Multiple Choice)
4.7/5
(29)

Use Matrices and Gauss-Jordan Elimination to Solve Systems Solve the system of equations using matrices. Use Gauss-Jordan elimination. - 6x-7y-z= 9 x+4y-7z= -12 -2x+y+z= -5

(Multiple Choice)
4.9/5
(27)

Use Cramer's rule to solve the system. - 4x+4z =40 -7x+5y+6z =64 -2x-2y =-16

(Multiple Choice)
4.8/5
(38)

Use Cramer's rule to solve the system. - -2x-4y-4z=-62 -4y+3z=-7 -4x-4z=-40

(Multiple Choice)
4.9/5
(38)

Understand What is Meant by Equal Matrices Find values for the variables so that the matrices are equal. - [x9]=[1y]\left[ \begin{array} { l } x \\9\end{array} \right] = \left[ \begin{array} { l } 1 \\y\end{array} \right]

(Multiple Choice)
4.8/5
(32)

Use Inverses to Solve Matrix Equations Write the linear system as a matrix equation in the form AX = B, where A is the coefficient matrix and B is the constant matrix. - 5x+2y-2z=37 4x+3y+5z=22 7x-2y+6z=15

(Multiple Choice)
4.8/5
(27)

Find the products AB and BA to determine whether B is the multiplicative inverse of A. - A=[5171],B=[12127252]A = \left[ \begin{array} { l l } - 5 & 1 \\ - 7 & 1 \end{array} \right] , \quad B = \left[ \begin{array} { l } \frac { 1 } { 2 } - \frac { 1 } { 2 } \\ \frac { 7 } { 2 } - \frac { 5 } { 2 } \end{array} \right]

(Multiple Choice)
4.7/5
(32)

Write the system of linear equations represented by the augmented matrix. Use x, y, z, and, if necessary, w for the variables. - [696220746802]\left[ \begin{array} { r r r | r } 6 & 9 & 6 & - 2 \\ 2 & 0 & 7 & 4 \\ 6 & 8 & 0 & 2 \end{array} \right]

(Multiple Choice)
5.0/5
(24)

Evaluate the determinant. - 5738\left| \begin{array} { l l } 5 & 7 \\ 3 & 8 \end{array} \right|

(Multiple Choice)
4.8/5
(29)

Find the product AB, if possible. - A=[446395999],B=[434647521]A = \left[ \begin{array} { r r r } 4 & 4 & - 6 \\- 3 & - 9 & 5 \\9 & 9 & - 9\end{array} \right] , B = \left[ \begin{array} { r r r } - 4 & - 3 & 4 \\6 & - 4 & - 7 \\5 & - 2 & 1\end{array} \right]

(Multiple Choice)
4.8/5
(31)

Solve the matrix equation for X. -Let A=[334045]A = \left[ \begin{array} { r r } 3 & - 3 \\ - 4 & 0 \\ 4 & - 5 \end{array} \right] and B=[400235]B = \left[ \begin{array} { r r } 4 & 0 \\ 0 & - 2 \\ 3 & - 5 \end{array} \right]

(Multiple Choice)
4.8/5
(32)

Use Inverses to Solve Matrix Equations Write the linear system as a matrix equation in the form AX = B, where A is the coefficient matrix and B is the constant matrix. - 9x2y=519 x - 2 y = 51 6y=366 y = 36

(Multiple Choice)
4.9/5
(38)

Use Matrices and Gauss-Jordan Elimination to Solve Systems Solve the system of equations using matrices. Use Gauss-Jordan elimination. - 3x+5y+2w =-12 2x+6z-w =-5 -2y+3z-3w =-3 -x+2y+4z+w =-2

(Multiple Choice)
4.7/5
(39)

Find the products AB and BA to determine whether B is the multiplicative inverse of A. - A=[210112101],B=[112324111]A = \left[ \begin{array} { r r r } 2 & - 1 & 0 \\- 1 & 1 & - 2 \\1 & 0 & - 1\end{array} \right] , \quad B = \left[ \begin{array} { r r r } 1 & - 1 & 2 \\- 3 & - 2 & 4 \\- 1 & 1 & 1\end{array} \right]

(Multiple Choice)
4.9/5
(40)

Use Cramer's rule to determine if the system is inconsistent system or contains dependent equations. - 4x+y=12 8x+2y=24

(Multiple Choice)
4.9/5
(36)

Solve the problem. -Let A=[223403469]A = \left[ \begin{array} { r r r } 2 & 2 & 3 \\ 4 & 0 & - 3 \\ - 4 & 6 & 9 \end{array} \right] and B=[623401396]B = \left[ \begin{array} { r r r } 6 & - 2 & 3 \\ - 4 & 0 & 1 \\ 3 & 9 & - 6 \end{array} \right] . Find A=BA = B .

(Multiple Choice)
4.8/5
(33)

Apply Gaussian Elimination to Systems Without Unique Solutions Use Gaussian elimination to find the complete solution to the system of equations, or state that none exists. - 3x-2y+2z-w=2 4x+y+z+6w=8 -3x+2y-2z+w=5 5x+3z-2w=1

(Multiple Choice)
4.8/5
(28)

Solve the problem. -Let A=[544478563]A = \left[ \begin{array} { r r r } - 5 & 4 & 4 \\ 4 & 7 & 8 \\ 5 & - 6 & 3 \end{array} \right] and B=[872598672]B = \left[ \begin{array} { r r r } 8 & 7 & - 2 \\ - 5 & - 9 & - 8 \\ - 6 & 7 & - 2 \end{array} \right] . Find 4A3B- 4 A - 3 B .

(Multiple Choice)
5.0/5
(33)

Solve the matrix equation for X. -Let A=[1313]\mathrm { A } = \left[ \begin{array} { r r } 1 & 3 \\ - 1 & - 3 \end{array} \right] and B=[1314];X+A=B\mathrm { B } = \left[ \begin{array} { r r } - 1 & - 3 \\ 1 & - 4 \end{array} \right] ; \quad \mathrm { X } + \mathrm { A } = \mathrm { B }

(Multiple Choice)
4.8/5
(46)

Write the system of linear equations represented by the augmented matrix. Use x, y, z, and, if necessary, w for the variables. - [610861310770054040410]\left[ \begin{array} { r r r r | r } 6 & 1 & 0 & 8 & - 6 \\- 1 & 3 & 1 & 0 & 7 \\7 & 0 & 0 & 5 & - 4 \\0 & 4 & 0 & - 4 & 10\end{array} \right]

(Multiple Choice)
4.8/5
(39)
Showing 61 - 80 of 152
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)