Exam 9: Linear Momentum and Collisions
Exam 1: Physics and Measurement25 Questions
Exam 2: Motion in One Dimension66 Questions
Exam 3: Vectors47 Questions
Exam 4: Motion in Two Dimensions79 Questions
Exam 5: The Laws of Motion113 Questions
Exam 6: Circular Motion and Other Applications of Newtons Laws55 Questions
Exam 7: Energy of a System74 Questions
Exam 8: Conservation of Energy84 Questions
Exam 9: Linear Momentum and Collisions89 Questions
Exam 10: Rotation of a Rigid Object About a Fixed Axis82 Questions
Exam 11: Angular Momentum46 Questions
Exam 12: Static Equilibrium and Elasticity34 Questions
Exam 13: Universal Gravitation47 Questions
Exam 14: Fluid Mechanics53 Questions
Exam 15: Oscillatory Motion41 Questions
Exam 16: Wave Motion82 Questions
Exam 18: Superposition and Standing Waves72 Questions
Exam 19: Temperature47 Questions
Exam 20: The First Law of Thermodynamics61 Questions
Exam 21: The Kinetic Theory of Gases38 Questions
Exam 22: Heat Engines, Entropy, and the Second Law of Thermodynamics55 Questions
Exam 23: Electric Fields67 Questions
Exam 24: Gausss Law82 Questions
Exam 25: Electric Potential111 Questions
Exam 26: Capacitance and Dielectrics63 Questions
Exam 27: Current and Resistance34 Questions
Exam 28: Direct-Current Circuits84 Questions
Exam 29: Magnetic Fields80 Questions
Exam 30: Sources of the Magnetic Field95 Questions
Exam 31: Faradays Law62 Questions
Exam 32: Inductance23 Questions
Exam 33: Alternating-Current Circuits65 Questions
Exam 34: Electromagnetic Waves40 Questions
Exam 35: The Nature of Light and the Principles of Ray Optics37 Questions
Exam 36: Image Formation43 Questions
Exam 37: Wave Optics48 Questions
Exam 38: Diffraction Patterns and Polarization47 Questions
Exam 39: Relativity34 Questions
Exam 40: Introduction to Quantum Physics48 Questions
Exam 41: Quantum Mechanics33 Questions
Exam 42: Atomic Physics59 Questions
Exam 43: Molecules and Solids46 Questions
Exam 44: Nuclear Structure89 Questions
Exam 46: Particle Physics and Cosmology34 Questions
Select questions type
A 1.6-kg block is attached to the end of a 2.0-m string to form a pendulum. The pendulum is released from rest when the string is horizontal. At the lowest point of its swing when it is moving horizontally, the block is hit by a 10-g bullet moving horizontally in the opposite direction. The bullet remains in the block and causes the block to come to rest at the low point of its swing. What was the magnitude of the bullet's velocity just before hitting the block?
(Multiple Choice)
4.9/5
(30)
A 2.0-kg object moving with a velocity of 5.0 m/s in the positive x direction strikes and sticks to a 3.0-kg object moving with a speed of 2.0 m/s in the same direction. How much kinetic energy is lost in this collision?
(Multiple Choice)
4.9/5
(28)
A rocket engine consumes 450 kg of fuel per minute. If the exhaust speed of the ejected fuel is 5.2 km/s, what is the thrust of the rocket?
(Multiple Choice)
4.8/5
(27)
At an instant when a particle of mass 50 g has an acceleration of 80 m/s2 in the positive x direction, a 75-g particle has an acceleration of 40 m/s2 in the positive y direction. What is the magnitude of the acceleration of the center of mass of this two-particle system at this instant?
(Multiple Choice)
4.9/5
(39)
The linear density of a rod, in g/m, is given by
. The rod extends from the origin to x = 0.400 m. What is the mass of the rod?

(Multiple Choice)
4.9/5
(34)
A 2.0-kg object moving 5.0 m/s collides with and sticks to an 8.0-kg object initially at rest. Determine the kinetic energy lost by the system as a result of this collision.
(Multiple Choice)
4.9/5
(38)
A 10-g bullet moving 1000 m/s strikes and passes through a 2.0-kg block initially at rest, as shown. The bullet emerges from the block with a speed of 400 m/s. To what maximum height will the block rise above its initial position?

(Multiple Choice)
4.9/5
(37)
A 1.5-kg playground ball is moving with a velocity of 3.0 m/s directed 30° below the horizontal just before it strikes a horizontal surface. The ball leaves this surface 0.50 s later with a velocity of 2.0 m/s directed 60° above the horizontal. What is the magnitude of the average resultant force on the ball?
(Multiple Choice)
4.7/5
(39)
A U-238 nucleus (mass = 238 units) decays, transforming into an alpha particle (mass = 4.00 units) and a residual thorium nucleus (mass = 234 units). If the uranium nucleus was at rest, and the alpha particle has a speed of 1.50 × 107 m/s, determine the recoil speed of the thorium nucleus.
(Short Answer)
4.7/5
(33)
A uniform thin wire has a length
and is bent into a semicircular arc of radius R. If the wire starts at (x, y) = (R, 0) and curves counterclockwise to (x, y) = (−R, 0), what is the y coordinate of its center of mass?

(Short Answer)
4.8/5
(39)
Two cars start at the same point, but travel in opposite directions on a circular path of radius R, each at speed v. While each car travels a distance less than
, one quarter circle, the center of mass of the two cars

(Multiple Choice)
4.9/5
(40)
A 3.0-kg mass is released from rest at point A of a circular frictionless track of radius 0.40 m as shown in the figure. The mass slides down the track and collides with a 1.4-kg mass that is initially at rest on a horizontal frictionless surface. If the masses stick together, what is their speed after the collision? 

(Multiple Choice)
4.8/5
(36)
Refer to Exhibit 9-1. What is the horizontal component of their momentum, in
, immediately after the collision?

(Multiple Choice)
4.8/5
(36)
The value of the momentum of a system is the same at a later time as at an earlier time if there are no
(Multiple Choice)
4.9/5
(28)
A 1.0-kg ball is attached to the end of a 2.5-m string to form a pendulum. This pendulum is released from rest with the string horizontal. At the lowest point in its swing when it is moving horizontally, the ball collides elastically with a 2.0-kg block initially at rest on a horizontal frictionless surface. What is the speed of the block just after the collision?
(Multiple Choice)
4.9/5
(42)
Refer to Exhibit 9-1. What is the magnitude of their velocity, in m/s, immediately after the collision?
(Multiple Choice)
4.8/5
(37)
Three particles are placed in the xy plane. A 30-g particle is located at (3, 4) m, and a 40-g particle is located at (−2, −2) m. Where must a 20-g particle be placed so that the center of mass of the three-particle system is at the origin?
(Multiple Choice)
4.8/5
(48)
A steel ball bearing of mass m1 and speed of magnitude v1 has a head-on elastic collision with a steel ball bearing of mass m2 at rest. Rank the speed v1 of m1 relative to v2, the magnitude of the speed of m2, after the collision when i) m1 > m2; ii) m1 = m2; and iii) m1 < m2.
(Multiple Choice)
4.9/5
(28)
A 10-g bullet moving horizontally with a speed of 2.0 km/s strikes and passes through a 4.0-kg block moving with a speed of 4.2 m/s in the opposite direction on a horizontal frictionless surface. If the block is brought to rest by the collision, what is the kinetic energy of the bullet as it emerges from the block?
(Multiple Choice)
4.8/5
(32)
An 80-g particle moving with an initial speed of 50 m/s in the positive x direction strikes and sticks to a 60-g particle moving 50 m/s in the positive y direction. How much kinetic energy is lost in this collision?
(Multiple Choice)
4.8/5
(39)
Showing 41 - 60 of 89
Filters
- Essay(0)
- Multiple Choice(0)
- Short Answer(0)
- True False(0)
- Matching(0)