Exam 11: An Introduction to Calculus: Limits, Derivatives, and Integrals

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the definite integral by computing an area. - 057xdx\int _ { 0 } ^ { 5 } 7 x d x

(Multiple Choice)
4.7/5
(34)

Use NDER on a calculator to find the numerical derivative of the function at the specified point. - f(x)=4x2+7xf ( x ) = - 4 x ^ { 2 } + 7 x at x=5x = 5

(Multiple Choice)
4.9/5
(30)

Find the derivative of the function using the definition of derivative. - f(x)=2xf ( x ) = - \frac { 2 } { x }

(Multiple Choice)
4.9/5
(38)

Use NINT on a calculator to find the numerical integral of the function over the specified interval. - f(x)=x36+x2;[0,10]f ( x ) = \frac { x } { 36 + x ^ { 2 } } ; [ 0,10 ] Round to three decimal places.

(Multiple Choice)
4.9/5
(24)

Find the limit of the function by using direct substitution. - limxπ/2(4excosx)\lim _ { x \rightarrow \pi / 2 } \left( 4 e ^ { x } \cos x \right)

(Multiple Choice)
4.9/5
(36)

Find the limit. -Let limx7f(x)=5\lim _ { x \rightarrow 7 } f ( x ) = - 5 and limx7g(x)=10\lim _ { x \rightarrow 7 } g ( x ) = - 10 . Find limx7f(x)g(x)\lim _ { x \rightarrow 7 } \frac { f ( x ) } { g ( x ) } .

(Multiple Choice)
5.0/5
(29)

Compute the average of the RRAM and LRAM approximations to estimate the area between the graph of the function and the x-axis over the given interval using the indicated number of subintervals. (The function is non-negative on the given interval). - f(x)=16+6xx2;[0,4];4f ( x ) = 16 + 6 x - x ^ { 2 } ; [ 0,4 ] ; 4 subintervals

(Multiple Choice)
4.8/5
(34)

Match the function with the correct table values. - f(x)=x2+5x+6x2+7x+12f ( x ) = \frac { x ^ { 2 } + 5 x + 6 } { x ^ { 2 } + 7 x + 12 }  Match the function with the correct table values. - f ( x ) = \frac { x ^ { 2 } + 5 x + 6 } { x ^ { 2 } + 7 x + 12 }

(Multiple Choice)
4.8/5
(34)

Find the equation of the tangent line to the curve when x has the given value. - f(x)=x;x=25f ( x ) = \sqrt { x } ; x = 25

(Multiple Choice)
4.9/5
(33)

Solve the problem. -Estimate the "RRAM" area under the graph of the function above the xx -axis and under the graph of the function from x=0x = 0 to x=5x = 5 . Use 5 subintervals.  Solve the problem. -Estimate the RRAM area under the graph of the function above the  x -axis and under the graph of the function from  x = 0  to  x = 5 . Use 5 subintervals.

(Multiple Choice)
4.8/5
(34)

Use graphs and tables to find the limit and identify any vertical asymptotes. - limx9xx9\lim _ { x \rightarrow 9 ^ { - } } \frac { x } { x - 9 }

(Multiple Choice)
4.8/5
(26)

Find the derivative of the function at the specified point. - f(x)=8x+2f ( x ) = \frac { 8 } { x + 2 } at x=0x = 0

(Multiple Choice)
4.9/5
(30)

Match the function with the correct table values. - f(x)=x41x1f ( x ) = \frac { x ^ { 4 } - 1 } { x - 1 }  Match the function with the correct table values. - f ( x ) = \frac { x ^ { 4 } - 1 } { x - 1 }

(Multiple Choice)
4.7/5
(30)

Solve the problem. -A toy rocket is launched straight up from level ground. Its velocity function is f(t)=18932tft/sec\mathrm { f } ( \mathrm { t } ) = 189 - 32 \mathrm { t } \mathrm { ft } / \mathrm { sec } , where t\mathrm { t } is the number of seconds after launch. At what time does the rocket reach its maximum height?

(Multiple Choice)
4.9/5
(37)

Find the limit of the function algebraically. - limx3x22x15x+3\lim _ { x \rightarrow 3 } \frac { x ^ { 2 } - 2 x - 15 } { x + 3 }

(Multiple Choice)
4.8/5
(39)

Find the derivative of the function at the specified point. - g(x)=x3+5xg ( x ) = x ^ { 3 } + 5 x at x=1x = 1

(Multiple Choice)
4.8/5
(30)

Find the indicated limit. - limxxcos1x\lim _ { x \rightarrow } x \cos \frac { 1 } { x }

(Multiple Choice)
4.8/5
(35)

Solve the problem. -The position of an object at time tt is given by s(t)s ( t ) . Find the instantaneous velocity at the indicated value of tt . s(t)=75s ( t ) = - 7 - 5 t at t=4t = 4

(Multiple Choice)
4.8/5
(33)

Find the derivative of the function at the specified point. - f(x)=5x+9f ( x ) = 5 x + 9 at x=2x = 2

(Multiple Choice)
4.9/5
(37)

Solve the problem. -A snail travels at 0.40.4 feet/min for 5 minutes. How far does it travel?

(Multiple Choice)
4.8/5
(41)
Showing 101 - 120 of 167
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)