Exam 11: An Introduction to Calculus: Limits, Derivatives, and Integrals

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the indicated limit, if it exists. - limx0f(x),f(x)={8x2x<08x=02x+8x>0\lim _ { x \rightarrow 0 } f ( x ) , f ( x ) = \left\{ \begin{array} { l l } 8 - x ^ { 2 } & x < 0 \\ 8 & x = 0 \\ 2 x + 8 & x > 0 \end{array} \right.

(Multiple Choice)
4.7/5
(40)

Solve the problem. -An industrial ventilation system can move 2000 cubic feet per minute. How many cubic feet of air are moved in 8 hours?

(Multiple Choice)
4.7/5
(31)

Find the derivative of the function at the specified point. - f(x)=x2+7x2f ( x ) = x ^ { 2 } + 7 x - 2 at x=0x = 0

(Multiple Choice)
4.8/5
(34)

Find the limit. -Let limx6f(x)=225\lim _ { x \rightarrow 6 } f ( x ) = 225 . Find limx6f(x)\lim _ { x \rightarrow 6 } \sqrt { f ( x ) } .

(Multiple Choice)
5.0/5
(25)

Find the limit of the function algebraically. - limx6x236x+6\lim _ { x \rightarrow 6 } \frac { x ^ { 2 } - 36 } { x + 6 }

(Multiple Choice)
4.8/5
(33)

Find the limit of the function algebraically. - limx1x7\lim _ { x \rightarrow 1 } \sqrt { x - 7 }

(Multiple Choice)
4.9/5
(29)

Estimate the slope of the tangent line at the indicated point. -Estimate the slope of the tangent line at the indicated point. -

(Multiple Choice)
4.7/5
(29)

Use NDER on a calculator to find the numerical derivative of the function at the specified point. - f(x)=ln(7x)f ( x ) = \ln ( 7 x ) at x=1x = 1

(Multiple Choice)
4.9/5
(30)

Find the indicated limit. - limx0sin(x)x2\lim _ { x \rightarrow 0 } \frac { \sin ( x ) } { x ^ { 2 } }

(Multiple Choice)
4.8/5
(40)

Find the derivative of the function using the definition of derivative. - f(x)=x2+7x2f ( x ) = x ^ { 2 } + 7 x - 2

(Multiple Choice)
4.8/5
(38)

Find the indicated limit, if it exists. - limx5f(x),f(x)={5xx<54x=5x+9x>5\lim _ { x \rightarrow 5 } f ( x ) , f ( x ) = \left\{ \begin{array} { l l } - 5 - x & x < - 5 \\ 4 & x = - 5 \\ x + 9 & x > - 5 \end{array} \right.

(Multiple Choice)
4.7/5
(41)

Determine the limit algebraically, if possible. - limx0sin6xx6\lim _ { x \rightarrow0 } \frac { \sin ^ { 6 } x } { x ^ { 6 } }

(Multiple Choice)
4.8/5
(30)

Determine the limit algebraically, if possible. - limx0sin2x2x\lim _ { x \rightarrow 0 } \frac { \sin ^ { 2 } x } { 2 x }

(Multiple Choice)
4.9/5
(40)

Solve the problem. -An arrow is shot straight up from level ground. The distance (in meters) of the arrow above the ground (the position function) is f(t)=4+130t4.9t2\mathrm { f } ( \mathrm { t } ) = 4 + 130 \mathrm { t } - 4.9 \mathrm { t } ^ { 2 } at any time t\mathrm { t } (in sec). Find f(1)\mathrm { f } ^ { \prime } ( 1 ) and the initial velocity of the arrow.

(Multiple Choice)
4.9/5
(36)

Find the limit of the function by using direct substitution. - limx0(x25)\lim _ { x \rightarrow 0 } \left( x ^ { 2 } - 5 \right)

(Multiple Choice)
4.8/5
(30)

Find the derivative of the function using the definition of derivative. - f(x)=5x+9f ( x ) = 5 x + 9

(Multiple Choice)
4.9/5
(28)

Find the definite integral by computing an area. - 250.5xdx\int _ { 2 } ^ { 5 } 0.5 x d x

(Multiple Choice)
4.8/5
(34)

Use a graph of the function to find the derivative of the function at the given point, if it exists. - f(x)={(x3)(x5)x3x32x=3 at x=3f(x)=\left\{\begin{array}{cl}\frac{(x-3)(x-5)}{x-3} & x \neq 3 \\-2 & x=3\end{array} \quad \text { at } x=3\right.

(Multiple Choice)
4.9/5
(37)

Use the given graph to determine the limit, if it exists. - limxθf(x)\lim _{x \rightarrow-\theta} f(x)  Use the given graph to determine the limit, if it exists. - \lim _{x \rightarrow-\theta} f(x)

(Multiple Choice)
4.9/5
(33)

Find the limit. -Let limx4f(x)=10\lim _ { x \rightarrow 4 } f ( x ) = - 10 and limx4g(x)=4\lim _ { x \rightarrow 4 } g ( x ) = 4 . Find limx4[f(x)g(x)]\lim _ { x \rightarrow 4 } [ f ( x ) - g ( x ) ] .

(Multiple Choice)
4.9/5
(38)
Showing 21 - 40 of 167
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)