Exam 11: An Introduction to Calculus: Limits, Derivatives, and Integrals

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Match the function with the correct table values. - f(x)=x29x3f ( x ) = \frac { x ^ { 2 } - 9 } { x - 3 }  Match the function with the correct table values. - f ( x ) = \frac { x ^ { 2 } - 9 } { x - 3 }

(Multiple Choice)
4.8/5
(33)

Solve the problem. -The position of an object at time tt is given by s(t)s ( t ) . Find the instantaneous velocity at the indicated value of tt . s(t)=3t1s ( t ) = \frac { 3 } { t - 1 } \quad at t=4t = 4

(Multiple Choice)
4.8/5
(30)

Use the given graph to determine the limit, if it exists. -Let f(x)={4,x>3x4,x<34,x=3f ( x ) = \left\{ \begin{array} { c } - 4 , x > 3 \\ - \frac { x } { 4 } , x < 3 \\ 4 , x = 3 \end{array} \right.  Use the given graph to determine the limit, if it exists. -Let  f ( x ) = \left\{ \begin{array} { c } - 4 , x > 3 \\ - \frac { x } { 4 } , x < 3 \\ 4 , x = 3 \end{array} \right.      \lim _ { x \rightarrow } f ( x ) limxf(x)\lim _ { x \rightarrow } f ( x )

(Multiple Choice)
4.8/5
(32)

It can be shown that the area enclosed between the x-axis and one arch of the sine curve is 2. Use this fact to compute the definite integral. - 06πsin(x6)dx\int _ { 0 } ^ { 6 \pi } \sin \left( \frac { x } { 6 } \right) d x (Hint: each rectangle is 6 times as wide.)

(Multiple Choice)
4.7/5
(42)

Use the given graph to determine the limit, if it exists. - Use the given graph to determine the limit, if it exists. -  Find  \lim _ { x \rightarrow 1 ^ { - } } f ( x )  and  \lim _ { x \rightarrow 1 ^ { + } } f ( x ) .  Find limx1f(x)\lim _ { x \rightarrow 1 ^ { - } } f ( x ) and limx1+f(x)\lim _ { x \rightarrow 1 ^ { + } } f ( x ) .

(Multiple Choice)
4.9/5
(36)

Use NINT on a calculator to find the numerical integral of the function over the specified interval. - f(x)=1x;[e4,e7]f ( x ) = \frac { 1 } { x } ; \left[ e ^ { 4 } , e ^ { 7 } \right]

(Multiple Choice)
4.8/5
(41)

Estimate the slope of the tangent line at the indicated point. -Estimate the slope of the tangent line at the indicated point. -

(Multiple Choice)
4.7/5
(38)

It can be shown that the area enclosed between the x-axis and one arch of the sine curve is 2. Use this fact to compute the definite integral. - 0π(sinx+1)dx\int _ { 0 } ^ { \pi } ( \sin x + 1 ) d x

(Multiple Choice)
4.8/5
(43)

Compute the average of the RRAM and LRAM approximations to estimate the area between the graph of the function and the x-axis over the given interval using the indicated number of subintervals. (The function is non-negative on the given interval). - f(x)=3x+3;[0,5];5f ( x ) = 3 x + 3 ; [ 0,5 ] ; 5 subintervals

(Multiple Choice)
4.8/5
(45)

Solve the problem. -A rocket is launched straight up from level ground. The distance (in ft\mathrm { ft } ) of the rocket above the ground (the position function) is f(t)=224t16t2\mathrm { f } ( \mathrm { t } ) = 224 \mathrm { t } - 16 \mathrm { t } ^ { 2 } at any time t\mathrm { t } (in sec). Find f(3)\mathrm { f } ^ { \prime } ( 3 ) and the initial velocity of the rocket.

(Multiple Choice)
4.8/5
(34)

Use the given graph to determine the limit, if it exists. -Let f(x)={3x+4,x<4x4,x>4f ( x ) = \left\{ \begin{array} { l l } 3 x + 4 , & x < - 4 \\ x - 4 , & x > - 4 \end{array} \right.  Use the given graph to determine the limit, if it exists. -Let  f ( x ) = \left\{ \begin{array} { l l } 3 x + 4 , & x < - 4 \\ x - 4 , & x > - 4 \end{array} \right.      \lim _ { x \rightarrow 4 } f ( x ) limx4f(x)\lim _ { x \rightarrow 4 } f ( x )

(Multiple Choice)
4.9/5
(33)

Use the given graph to determine the limit, if it exists. - limx1f(x)\lim _{x \rightarrow-1} f(x)  Use the given graph to determine the limit, if it exists. - \lim _{x \rightarrow-1} f(x)

(Multiple Choice)
4.9/5
(39)

Find the limit of the function by using direct substitution. - limxax22x15x+3\lim _ { x \rightarrow a } \frac { x ^ { 2 } - 2 x - 15 } { x + 3 }

(Multiple Choice)
4.8/5
(31)

Match the function with the correct table values. - f(x)=x2f ( x ) = \sqrt { x } - 2  Match the function with the correct table values. - f ( x ) = \sqrt { x } - 2

(Multiple Choice)
4.8/5
(29)

Solve the problem. -The velocity of a projectile fired straight into the air is given every half second. Use left endpoints to estimate the distance the projectile traveled in four seconds. TimdVelocity Solve the problem. -The velocity of a projectile fired straight into the air is given every half second. Use left endpoints to estimate the distance the projectile traveled in four seconds. TimdVelocity

(Multiple Choice)
4.8/5
(36)

It can be shown that the area enclosed between the x-axis and one arch of the sine curve is 2. Use this fact to compute the definite integral. - 0π7sinxdx\int _ { 0 } ^ { \pi } 7 \sin x d x

(Multiple Choice)
4.7/5
(33)

Solve the problem. -Estimate the "RRAM" area under the graph of the function above the xx -axis and under the graph of the function from x=0x = 0 to x=5x = 5 . Use 5 subintervals.  Solve the problem. -Estimate the RRAM area under the graph of the function above the  x -axis and under the graph of the function from  x = 0  to  x = 5 . Use 5 subintervals.

(Multiple Choice)
4.9/5
(35)

Sketch a possible graph for a function f that has the stated properties. -  The domain of f is [5,0] and the derivative at x=2 is 3\text { The domain of } \mathrm { f } \text { is } [ - 5,0 ] \text { and the derivative at } \mathrm { x } = - 2 \text { is } 3 \text {. }  Sketch a possible graph for a function f that has the stated properties. - \text { The domain of } \mathrm { f } \text { is } [ - 5,0 ] \text { and the derivative at } \mathrm { x } = - 2 \text { is } 3 \text {. }

(Not Answered)
This question doesn't have any answer yet
Ask our community

Use NDER on a calculator to find the numerical derivative of the function at the specified point. - f(x)=5x2+x at x=4f ( x ) = 5 x ^ { 2 } + x \text { at } x = - 4

(Multiple Choice)
4.8/5
(29)

Use the given graph to determine the limit, if it exists. - Use the given graph to determine the limit, if it exists. -  Find  \lim _ { x - \underline { 2 } ^ { - } } f ( x )  and  \lim _ { x - \underline { - } ^ { + } } f ( x ) . Find limx2f(x)\lim _ { x - \underline { 2 } ^ { - } } f ( x ) and limx+f(x)\lim _ { x - \underline { - } ^ { + } } f ( x ) .

(Multiple Choice)
4.9/5
(30)
Showing 141 - 160 of 167
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)