Exam 2: Limits and Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the limit, if it exists. - limx6x2+10x+24x+6\lim _ { x \rightarrow -6 } \frac { x ^ { 2 } + 10 x + 24 } { x + 6 }

(Multiple Choice)
4.9/5
(40)

Prove the limit statement - limx2x24x2=4\lim _ { x \rightarrow 2 } \frac { x ^ { 2 } - 4 } { x - 2 } = 4

(Essay)
4.8/5
(39)

Find the limit LL for the given function ff , the point x0x _ { 0 } , and the positive number ε\varepsilon . Then find a number δ>0\delta > 0 such that, for all xt0<xx0<δf(x)L<εx _ { t } 0 < \left| x - x _ { 0 } \right| < \delta \Rightarrow | f ( x ) - L | < \varepsilon . -  Find the limit  L  for the given function  f , the point  x _ { 0 } , and the positive number  \varepsilon . Then find a number  \delta > 0  such that, for all  x _ { t } 0 < \left| x - x _ { 0 } \right| < \delta \Rightarrow | f ( x ) - L | < \varepsilon . -

(Multiple Choice)
4.8/5
(36)

Find the limit, if it exists. - limh0(x+h)3x3h\lim _ { h \rightarrow 0 } \frac { ( x + h ) ^ { 3 } - x ^ { 3 } } { h }

(Multiple Choice)
4.9/5
(33)

Use the graph to estimate the specified limit. -Find lim x \rightarrow 0 f(x)  Use the graph to estimate the specified limit. -Find lim x  \rightarrow 0 f(x)

(Multiple Choice)
4.9/5
(41)

Find the limit LL for the given function ff , the point x0x _ { 0 } , and the positive number ε\varepsilon . Then find a number δ>0\delta > 0 such that, for all xt0<xx0<δf(x)L<εx _ { t } 0 < \left| x - x _ { 0 } \right| < \delta \Rightarrow | f ( x ) - L | < \varepsilon . -f(x) = 5x + 2, L = 17, x0 = 3, and ε\varepsilon = 0.01

(Multiple Choice)
4.9/5
(33)

Find the limit. - limx015+cos2x\lim _ { x \rightarrow 0 } \sqrt { 15 + \cos ^ { 2 } x }

(Multiple Choice)
4.7/5
(33)

Determine the limit by sketching an appropriate graph. - limx7+f(x), where f(x)={x7x<0, or 0<x31x=00x<7 or x>3\lim _ { x \rightarrow 7 ^ { + } } f ( x ) \text {, where } f ( x ) = \left\{ \begin{array} { l l } x & - 7 \leq x < 0 , \text { or } 0 < x \leq 3 \\1 & x = 0 \\0 & x < - 7 \text { or } x > 3\end{array} \right.  Determine the limit by sketching an appropriate graph. - \lim _ { x \rightarrow 7 ^ { + } } f ( x ) \text {, where } f ( x ) = \left\{ \begin{array} { l l }  x & - 7 \leq x < 0 , \text { or } 0 < x \leq 3 \\ 1 & x = 0 \\ 0 & x < - 7 \text { or } x > 3 \end{array} \right.

(Multiple Choice)
4.8/5
(38)

Find the slope of the curve at the given point P and an equation of the tangent line at P. - y=x39x,P(1,8)y = x ^ { 3 } - 9 x , P ( 1 , - 8 )

(Multiple Choice)
4.9/5
(40)

Find the limit. -If limx1f(x)3x1=2\lim _ { x \rightarrow 1 } \frac { f ( x ) - 3 } { x - 1 } = 2 , find limx1f(x)\lim _ { x \rightarrow 1 } f ( x ) .

(Multiple Choice)
4.8/5
(40)

Give an appropriate answer. -Let limx9f(x)=7\lim _ { x \rightarrow 9 } f ( x ) = 7 and limx9g(x)=10\lim _ { x \rightarrow 9 } g ( x ) = - 10 . Find limx9f(x)g(x)\lim _ { x \rightarrow 9} \frac { f ( x ) } { g ( x ) } .

(Multiple Choice)
4.8/5
(34)

Find the limit if it exists. - limx1(x+3)2(x2)3\lim _ { x \rightarrow - 1 } ( x + 3 ) ^ { 2 } ( x - 2 ) ^ { 3 }

(Multiple Choice)
4.8/5
(26)

Find the limit. -If limx0f(x)x2=4\lim _ { x \rightarrow 0 } \frac { f ( x ) } { x ^ { 2 } } = 4 , find limx0f(x)x\lim _ { x \rightarrow 0 } \frac { f ( x ) } { x } .

(Multiple Choice)
4.9/5
(38)
Showing 201 - 213 of 213
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)