Exam 2: Limits and Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the limit LL for the given function ff , the point x0x _ { 0 } , and the positive number ε\varepsilon . Then find a number δ>0\delta > 0 such that, for all xt0<xx0<δf(x)L<εx _ { t } 0 < \left| x - x _ { 0 } \right| < \delta \Rightarrow | f ( x ) - L | < \varepsilon . - f(x)=1/x,L=1/7,x0=7, and ε=0.4f ( x ) = 1 / x , L = 1 / 7 , x _ { 0 } = 7 \text {, and } \varepsilon = 0.4

(Multiple Choice)
4.9/5
(30)

Provide an appropriate response. -Provide a short sentence that summarizes the general limit principle given by the formal notation limxa[f(x)±g(x)]=limxaf(x)±limxag(x)=L±M\lim _ { x \rightarrow a } [ f ( x ) \pm g ( x ) ] = \lim _ { x \rightarrow a } f ( x ) \pm \lim _ { x \rightarrow a } g ( x ) = L \pm M , given that limxaf(x)=L\lim _ { x \rightarrow a } f ( x ) = L and limxag(x)=M\lim _ { x \rightarrow a } g ( x ) = M .

(Multiple Choice)
4.9/5
(39)

Provide an appropriate response. -If limx1f(x)=1\lim _ { x \rightarrow 1 ^ { - } } f ( x ) = 1 , limx1+f(x)=1\lim _ { x \rightarrow 1 ^ { + } } f ( x ) = - 1 , and f(x)f ( x ) is an even function, which of the following statements are true? I. limx1f(x)=1\lim _ { x \rightarrow 1 ^ { - } } f ( x ) = - 1 II. limx1+f(x)=1\lim _ { x \rightarrow 1 ^ { + } } f ( x ) = - 1 III. limx1f(x)\lim _ { x \rightarrow 1 } f ( x ) does not exist.

(Multiple Choice)
4.9/5
(32)

Find all points where the function is discontinuous. -Find all points where the function is discontinuous. -

(Multiple Choice)
5.0/5
(29)

Find the limit, if it exists. - limx13x2+7x23x24x2\lim _ { x \rightarrow 1 } \frac { 3 x ^ { 2 } + 7 x - 2 } { 3 x ^ { 2 } - 4 x - 2 }

(Multiple Choice)
4.9/5
(38)

Find the limit, if it exists. - limx8x2+2x80x264\lim _ { x \rightarrow 8 } \frac { x ^ { 2 } + 2 x - 80 } { x ^ { 2 } - 64 }

(Multiple Choice)
4.8/5
(29)

Find the average rate of change of the function over the given interval. - y=2x,[2,8]y = \sqrt { 2 x } , [ 2,8 ]

(Multiple Choice)
4.8/5
(37)

Find the limit, if it exists. - limx141x14\lim _ { x \rightarrow 14 } \frac { 1 } { x - 14 }

(Multiple Choice)
4.8/5
(33)

Find the limit if it exists. - limx9(226x)\lim _ { x \rightarrow 9 } ( 22 - 6 x )

(Multiple Choice)
4.7/5
(41)

 Find the limit using limx=0sinxx=1\text { Find the limit using } \lim _ { x = 0 } \frac { \sin x } { x } = 1 \text {. } - limx0x22x+sinxx\lim _ { x \rightarrow 0 } \frac { x ^ { 2 } - 2 x + \sin x } { x }

(Multiple Choice)
4.9/5
(27)

Use a CAS to plot the function near the point x0 being approached. From your plot guess the value of the limit. - limx1x21x2+32\lim _ { x \rightarrow- 1 } \frac { x ^ { 2 } - 1 } { \sqrt { x ^ { 2 } + 3 } - 2 }

(Multiple Choice)
4.9/5
(31)

Provide an appropriate response. -It can be shown that the inequalities xxcos(1x)x- x \leq x \cos \left( \frac { 1 } { x } \right) \leq x hold for all values of x0x \geq 0 . Find limx0xcos(1x)\lim _ { x \rightarrow 0 } x \cos \left( \frac { 1 } { x } \right) if it exists.

(Multiple Choice)
4.9/5
(35)

Provide an appropriate response. -If limx0f(x)=L\lim _ { x \rightarrow 0 } f ( x ) = L , which of the following expressions are true? I. limx0f(x)\lim _ { x \rightarrow 0 ^ { - } } f ( x ) does not exist. II. limx0+f(x)\lim _ { x \rightarrow0 ^ { + } } f ( x ) does not exist. III. limx0f(x)=L\lim _ { x \rightarrow0 ^ { - } } f ( x ) = L IV. limx0+f(x)=L\lim _ { x \rightarrow0 ^ { + } } f ( x ) = L

(Multiple Choice)
5.0/5
(41)

Find the limit LL for the given function ff , the point x0x _ { 0 } , and the positive number ε\varepsilon . Then find a number δ>0\delta > 0 such that, for all xt0<xx0<δf(x)L<εx _ { t } 0 < \left| x - x _ { 0 } \right| < \delta \Rightarrow | f ( x ) - L | < \varepsilon . - f(x)=mx+b,m>0,L=(m/8)+b,x0=1/8, and ε=c>0f ( x ) = m x + b , m > 0 , L = ( m / 8 ) + b , x _ { 0 } = 1 / 8 \text {, and } \varepsilon = c > 0

(Multiple Choice)
4.7/5
(31)

Find the limit LL for the given function ff , the point x0x _ { 0 } , and the positive number ε\varepsilon . Then find a number δ>0\delta > 0 such that, for all xt0<xx0<δf(x)L<εx _ { t } 0 < \left| x - x _ { 0 } \right| < \delta \Rightarrow | f ( x ) - L | < \varepsilon . -  Find the limit  L  for the given function  f , the point  x _ { 0 } , and the positive number  \varepsilon . Then find a number  \delta > 0  such that, for all  x _ { t } 0 < \left| x - x _ { 0 } \right| < \delta \Rightarrow | f ( x ) - L | < \varepsilon . -

(Multiple Choice)
4.8/5
(39)

 Find the limit using limx=0sinxx=1\text { Find the limit using } \lim _ { x = 0 } \frac { \sin x } { x } = 1 \text {. } - limx0tan4xx\lim _ { x \rightarrow0 } \frac { \tan 4 x } { x }

(Multiple Choice)
4.8/5
(32)

Find all points where the function is discontinuous. -Find all points where the function is discontinuous. -

(Multiple Choice)
4.9/5
(35)

Use a CAS to plot the function near the point x0 being approached. From your plot guess the value of the limit. - limx081+x81xx\lim _ { x \rightarrow 0 } \frac { \sqrt { 81 + x } - \sqrt { 81 - x } } { x }

(Multiple Choice)
4.8/5
(39)

Give an appropriate answer. - f(x)=4x+5 for x0=2f ( x ) = 4 x + 5 \text { for } x _ { 0 } = 2

(Multiple Choice)
4.8/5
(40)

Find the limit LL for the given function ff , the point x0x _ { 0 } , and the positive number ε\varepsilon . Then find a number δ>0\delta > 0 such that, for all xt0<xx0<δf(x)L<εx _ { t } 0 < \left| x - x _ { 0 } \right| < \delta \Rightarrow | f ( x ) - L | < \varepsilon . - f(x)=mx,m>0,L=4m,x0=4f ( x ) = m x , m > 0 , L = 4 m , x _ { 0 } = 4 , and ε=0.07\varepsilon = 0.07

(Multiple Choice)
4.9/5
(43)
Showing 121 - 140 of 213
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)