Exam 2: Limits and Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Provide an appropriate response. -What conditions, when present, are sufficient to conclude that a function f(x) has a limit as x approaches some value of a?

(Multiple Choice)
4.8/5
(36)

Find the limit, if it exists. - limx12x74x+5\lim _ { x \rightarrow 1 } \frac { 2 x - 7 } { 4 x + 5 }

(Multiple Choice)
4.8/5
(37)

Determine the limit by sketching an appropriate graph. - limx2f(x), where f(x)={1x20x<111x<22x=2\lim _ { x \rightarrow 2 ^ { - } } f ( x ) , \text { where } f ( x ) = \left\{ \begin{array} { l l } \sqrt { 1 - x ^ { 2 } } & 0 \leq x < 1 \\1 & 1 \leq x < 2 \\2 & x = 2\end{array} \right.  Determine the limit by sketching an appropriate graph. - \lim _ { x \rightarrow 2 ^ { - } } f ( x ) , \text { where } f ( x ) = \left\{ \begin{array} { l l }  \sqrt { 1 - x ^ { 2 } } & 0 \leq x < 1 \\ 1 & 1 \leq x < 2 \\ 2 & x = 2 \end{array} \right.

(Multiple Choice)
4.8/5
(38)

Find the limit, if it exists. - limx77x7x\lim _ { x \rightarrow 7 } \frac { | 7 - x | } { 7 - x }

(Multiple Choice)
4.9/5
(48)

Find the limit. - limx2(x3+5x27x+1)\lim _ { x \rightarrow 2 } \left( x ^ { 3 } + 5 x ^ { 2 } - 7 x + 1 \right)

(Multiple Choice)
4.9/5
(36)

Use the graph to estimate the specified limit. -  Find limx(π/2)f(x) and limx(π/2)+f(x)\text { Find } \lim _ { x \rightarrow (\pi / 2 ) ^ { - } } f ( x ) \text { and } \lim _ { x\rightarrow (\pi / 2 ) ^ { + } } f ( x )  Use the graph to estimate the specified limit. - \text { Find } \lim _ { x \rightarrow (\pi / 2 ) ^ { - } } f ( x ) \text { and } \lim _ { x\rightarrow  (\pi / 2 ) ^ { + } } f ( x )

(Multiple Choice)
4.7/5
(25)

Use the table of values of f to estimate the limit. -  Let f(x)=x+5x2+7x+10, find limx5f(x)\text { Let } f(x)=\frac{x+5}{x^{2}+7 x+10} \text {, find } \lim _{x \rightarrow 5} f(x) -5.1 -5.01 -5.001 -4.999 -4.99 -4.9 ()

(Multiple Choice)
4.8/5
(33)

Use the slopes of UQ, UR, US, and UT to estimate the rate of change of y at the specified value of x. -x = 5 Use the slopes of UQ, UR, US, and UT to estimate the rate of change of y at the specified value of x. -x = 5

(Multiple Choice)
4.8/5
(28)

Find the limit, if it exists. - limx0x36x+8x2\lim _ { x\rightarrow 0 } \frac { x ^ { 3 } - 6 x + 8 } { x - 2 }

(Multiple Choice)
4.9/5
(35)

Give an appropriate answer. -Let limx7f(x)=7\lim _ { x \rightarrow 7 } f ( x ) = - 7 and limx7g(x)=5\lim _ { x \rightarrow 7 } g ( x ) = - 5 . Find limx7[f(x)+g(x)]2\lim _ { x \rightarrow 7 } [ f ( x ) + g ( x ) ] ^ { 2 } .

(Multiple Choice)
4.8/5
(39)

 Find the limit using limx=0sinxx=1\text { Find the limit using } \lim _ { x = 0 } \frac { \sin x } { x } = 1 \text {. } - limh0+h2+13h+1414h\lim _ { h \rightarrow 0^ { + } } \frac { \sqrt { h ^ { 2 } + 13 h + 14 } - \sqrt { 14 } } { h }

(Multiple Choice)
4.9/5
(34)

Provide an appropriate response. -If x3f(x)xx ^ { 3 } \leq f ( x ) \leq x for xx in [1,1][ - 1,1 ] , find limxθf(x)\lim _ { x \rightarrow \theta } f ( x ) if it exists.

(Multiple Choice)
4.9/5
(36)

Use the graph to evaluate the limit. - limx0f(x)\lim _ { x \rightarrow 0 } f ( x )  Use the graph to evaluate the limit. - \lim _ { x \rightarrow 0 } f ( x )

(Multiple Choice)
4.7/5
(37)

limx0f(x)\lim _ { x \rightarrow 0 } f ( x ) \lim _ { x \rightarrow 0 } f ( x )

(Multiple Choice)
4.7/5
(33)

Find the limit LL for the given function ff , the point x0x _ { 0 } , and the positive number ε\varepsilon . Then find a number δ>0\delta > 0 such that, for all xt0<xx0<δf(x)L<εx _ { t } 0 < \left| x - x _ { 0 } \right| < \delta \Rightarrow | f ( x ) - L | < \varepsilon . -f(x) = -10x - 4, L = -24, x0 = 2, and ε\varepsilon = 0.01

(Multiple Choice)
4.8/5
(41)

 Find the limit using limx=0sinxx=1\text { Find the limit using } \lim _ { x = 0 } \frac { \sin x } { x } = 1 \text {. } - limx8+5x(x3)x3\lim _ { x \rightarrow 8 ^ { + } } \frac { \sqrt { 5 x } ( x - 3 ) } { | x - 3 | }

(Multiple Choice)
4.7/5
(35)

Provide an appropriate response. -Given ε>0\varepsilon > 0 , find an interval I=(1,1+δ),δ>0\mathrm { I } = ( 1,1 + \delta ) , \delta > 0 , such that if xx lies in I\mathrm { I } , then x1<ε\sqrt { x - 1 } < \varepsilon . What limit is being verified and what is its value?

(Multiple Choice)
4.7/5
(37)

Give an appropriate answer. -  Evaluate limhθf(x0+h)f(x0)h for the given x0 and function f\text { Evaluate } \lim _ { h \rightarrow \theta } \frac { f \left( x _ { 0 } + h \right) - f \left( x _ { 0 } \right) } { h } \text { for the given } x _ { 0 } \text { and function } f \text {. } f(x)=3x2 for x0=9f ( x ) = 3 x ^ { 2 } \text { for } x _ { 0 } = 9

(Multiple Choice)
4.8/5
(45)

Find the limit. -If limx2f(x)x=3\lim _ { x \rightarrow 2 } \frac { f ( x ) } { x } = 3 , find limx2f(x)\lim _ { x \rightarrow 2 } f ( x ) .

(Multiple Choice)
4.8/5
(36)

Find the average rate of change of the function over the given interval. - y=3x2,[4,7]y = \frac { 3 } { x - 2 } , [ 4,7 ]

(Multiple Choice)
4.8/5
(36)
Showing 61 - 80 of 213
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)