Exam 2: Limits and Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use the graph to estimate the specified limit. -Find lim x \rightarrow 0 f(x)  Use the graph to estimate the specified limit. -Find lim x  \rightarrow 0 f(x)

(Multiple Choice)
4.8/5
(30)

Find the limit. - limx0(3sinx1)\lim _ { x \rightarrow 0 } ( 3 \sin x - 1 )

(Multiple Choice)
4.9/5
(30)

Find the limit if it exists. - limx166x(x25)\lim _ { x \rightarrow \frac { 1 } { 6 } } 6 x \left( x - \frac { 2 } { 5 } \right)

(Multiple Choice)
4.8/5
(42)

Give an appropriate answer. -  Let limx7f(x)=8 and limx7g(x)=5. Find limx7[f(x)g(x)]\text { Let } \lim _ { x \rightarrow 7 } f ( x ) = - 8 \text { and } \lim _ { x \rightarrow 7 } g ( x ) = 5 \text {. Find } \lim _ { x \rightarrow 7 } [ f ( x ) - g ( x ) ] \text {. }

(Multiple Choice)
4.9/5
(33)

Use the graph to estimate the specified limit. -  Find limx0f(x) and limx0+f(x)\text { Find } \lim _ { x \rightarrow 0 ^ { - } } f ( x ) \text { and } \lim _ { x \rightarrow 0^ { + } } f ( x )  Use the graph to estimate the specified limit. - \text { Find } \lim _ { x \rightarrow 0 ^ { - } } f ( x ) \text { and } \lim _ { x \rightarrow 0^ { + } } f ( x )

(Multiple Choice)
4.9/5
(36)

Find the limit LL for the given function ff , the point x0x _ { 0 } , and the positive number ε\varepsilon . Then find a number δ>0\delta > 0 such that, for all xt0<xx0<δf(x)L<εx _ { t } 0 < \left| x - x _ { 0 } \right| < \delta \Rightarrow | f ( x ) - L | < \varepsilon . - f(x)=10x,x0=5,ε=0.1\mathrm { f } ( \mathrm { x } ) = \frac { 10 } { \mathrm { x } } , \mathrm { x } _ { 0 } = 5 , \varepsilon = 0.1

(Multiple Choice)
4.8/5
(41)

 Find the limit using limx=0sinxx=1\text { Find the limit using } \lim _ { x = 0 } \frac { \sin x } { x } = 1 \text {. } - limx06x2(cot3x)(csc2x)\lim _ { x \rightarrow 0 } 6 x ^ { 2 } ( \cot 3 x ) ( \csc 2 x )

(Multiple Choice)
5.0/5
(33)

 Find the limit using limx=0sinxx=1\text { Find the limit using } \lim _ { x = 0 } \frac { \sin x } { x } = 1 \text {. } - limx1(x+3)(x+1x+1)\lim _ { x \rightarrow 1 ^ { - } } ( x + 3 ) \left( \frac { | x + 1 | } { x + 1 } \right)

(Multiple Choice)
4.8/5
(40)

Find the limit LL for the given function ff , the point x0x _ { 0 } , and the positive number ε\varepsilon . Then find a number δ>0\delta > 0 such that, for all xt0<xx0<δf(x)L<εx _ { t } 0 < \left| x - x _ { 0 } \right| < \delta \Rightarrow | f ( x ) - L | < \varepsilon . -f(x) = -10x + 5, L = -15, x0 = 2, and ε\varepsilon = 0.01

(Multiple Choice)
4.9/5
(38)

Find the limit LL for the given function ff , the point x0x _ { 0 } , and the positive number ε\varepsilon . Then find a number δ>0\delta > 0 such that, for all xt0<xx0<δf(x)L<εx _ { t } 0 < \left| x - x _ { 0 } \right| < \delta \Rightarrow | f ( x ) - L | < \varepsilon . - f(x)=6x+3,x0=5,ε=0.06\mathrm { f } ( \mathrm { x } ) = 6 \mathrm { x } + 3 , \mathrm { x } _ { 0 } = - 5 , \varepsilon = 0.06

(Multiple Choice)
4.8/5
(30)

Give an appropriate answer. - f(x)=3x+8 for x0=9f ( x ) = 3 \sqrt { x } + 8 \text { for } x _ { 0 } = 9

(Multiple Choice)
4.9/5
(37)

Find the limit LL for the given function ff , the point x0x _ { 0 } , and the positive number ε\varepsilon . Then find a number δ>0\delta > 0 such that, for all xt0<xx0<δf(x)L<εx _ { t } 0 < \left| x - x _ { 0 } \right| < \delta \Rightarrow | f ( x ) - L | < \varepsilon . -f(x) = 3x - 2, L = 1, x0 = 1, and ε\varepsilon = 0.01

(Multiple Choice)
4.8/5
(38)

Use the table of values of f to estimate the limit. -  Let f(x)=x2+8x2, find limx2f(x)\text { Let } f(x)=x^{2}+8 x-2, \text { find } \lim _{x \rightarrow 2} f(x) 1.9 1.99 1.999 2.001 2.01 2.1 ()

(Multiple Choice)
4.7/5
(34)

 Find the limit using limx=0sinxx=1\text { Find the limit using } \lim _ { x = 0 } \frac { \sin x } { x } = 1 \text {. } - limx2xx\lim _ { x \rightarrow 2 ^ { - } } \frac { \lfloor x \rfloor } { x }

(Multiple Choice)
4.7/5
(44)

Use the graph to estimate the specified limit. -  Find limx2f(x) and limx2+f(x)\text { Find } \lim _ { x \rightarrow 2 ^ { - } } f ( x ) \text { and } \lim _ { x \rightarrow 2^ { + } } f ( x )  Use the graph to estimate the specified limit. - \text { Find } \lim _ { x \rightarrow 2 ^ { - } } f ( x ) \text { and } \lim _ { x \rightarrow 2^ { + } } f ( x )

(Multiple Choice)
4.8/5
(38)

Provide an appropriate response. -It can be shown that the inequalities 1x26<xsin(x)22cos(x)<11 - \frac { x ^ { 2 } } { 6 } < \frac { x \sin ( x ) } { 2 - 2 \cos ( x ) } < 1 hold for all values of xx close to zero. What, if anything, does this tell you about xsin(x)22cos(x)\frac { x \sin ( x ) } { 2 - 2 \cos ( x ) } ? Explain.

(Essay)
4.9/5
(28)

Provide an appropriate response. -If limf(x)=1\lim f ( x ) = 1 and f(x)f ( x ) is an odd function, which of the following statements are true? I. limx0f(x)=1\lim _ { x \rightarrow 0 } f ( x ) = 1 II. limx0+f(x)=1\lim _ { x \rightarrow 0^ { + } } f ( x ) = - 1 III. limx0f(x)\lim _ { x \rightarrow - 0 } f ( x ) does not exist.

(Multiple Choice)
4.9/5
(41)

Use the table to estimate the rate of change of y at the specified value of x. -x = 2. 0 10 0.5 38 1.0 58 1.5 70 2.0 74 2.5 70 3.0 58 3.5 38 4.0 10

(Multiple Choice)
4.8/5
(40)

Use the table to estimate the rate of change of y at the specified value of x. -When exposed to ethylene gas, green bananas will ripen at an accelerated rate. The number of days for ripening becomes shorter for longer exposure times. Assume that the table below gives average ripening times of Bananas for several different ethylene exposure times. Use the table to estimate the rate of change of y at the specified value of x. -When exposed to ethylene gas, green bananas will ripen at an accelerated rate. The number of days for ripening becomes shorter for longer exposure times. Assume that the table below gives average ripening times of Bananas for several different ethylene exposure times.   Plot the data and then find a line approximating the data. With the aid of this line, determine the rate of change of Ripening time with respect to exposure time. Round your answer to two significant digits.   Plot the data and then find a line approximating the data. With the aid of this line, determine the rate of change of Ripening time with respect to exposure time. Round your answer to two significant digits. Use the table to estimate the rate of change of y at the specified value of x. -When exposed to ethylene gas, green bananas will ripen at an accelerated rate. The number of days for ripening becomes shorter for longer exposure times. Assume that the table below gives average ripening times of Bananas for several different ethylene exposure times.   Plot the data and then find a line approximating the data. With the aid of this line, determine the rate of change of Ripening time with respect to exposure time. Round your answer to two significant digits.

(Multiple Choice)
4.8/5
(34)

Use the graph to evaluate the limit. - limx0f(x)\lim _ { x \rightarrow 0 } f ( x )  Use the graph to evaluate the limit. - \lim _ { x \rightarrow 0 } f ( x )

(Multiple Choice)
4.9/5
(32)
Showing 81 - 100 of 213
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)