Exam 2: Limits and Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use the table of values of f to estimate the limit. -  Let f(x)=x24x5x27x+10, find limx5f(x)\text { Let } f(x)=\frac{x^{2}-4 x-5}{x^{2}-7 x+10} \text {, find } \lim _{x \rightarrow 5} f(x) \text {. } 4.9 4.99 4.999 5.001 5.01 5.1 ()

(Multiple Choice)
4.7/5
(42)

Find the limit. - limx2(x2+8x2)\lim _ { x \rightarrow 2 } \left( x ^ { 2 } + 8 x - 2 \right)

(Multiple Choice)
4.7/5
(46)

Find the limit LL for the given function ff , the point x0x _ { 0 } , and the positive number ε\varepsilon . Then find a number δ>0\delta > 0 such that, for all xt0<xx0<δf(x)L<εx _ { t } 0 < \left| x - x _ { 0 } \right| < \delta \Rightarrow | f ( x ) - L | < \varepsilon . - f(x)=18x,L=4,x0=2, and ε=1f ( x ) = \sqrt { 18 - x } , L = 4 , x _ { 0 } = 2 , \text { and } \varepsilon = 1

(Multiple Choice)
4.8/5
(33)

Use the table to estimate the rate of change of y at the specified value of x. -x = 1. 0 0 0.2 0.02 0.4 0.08 0.6 0.18 0.8 0.32 1.0 0.5 1.2 0.72 1.4 0.98

(Multiple Choice)
4.7/5
(36)

Use the graph to evaluate the limit. - limx1f(x)\lim _ { x \rightarrow 1 } f ( x )  Use the graph to evaluate the limit. - \lim _ { x \rightarrow 1 } f ( x )

(Multiple Choice)
4.9/5
(35)

 Find the limit using limx=0sinxx=1\text { Find the limit using } \lim _ { x = 0 } \frac { \sin x } { x } = 1 \text {. } - limx0sin5xsin4x\lim _ { x \rightarrow 0 } \frac { \sin 5 x } { \sin 4 x }

(Multiple Choice)
4.8/5
(43)

Use the slopes of UQ, UR, US, and UT to estimate the rate of change of y at the specified value of x. -x = 2.5 Use the slopes of UQ, UR, US, and UT to estimate the rate of change of y at the specified value of x. -x = 2.5

(Multiple Choice)
4.7/5
(34)

 Find the limit using limx=0sinxx=1\text { Find the limit using } \lim _ { x = 0 } \frac { \sin x } { x } = 1 \text {. } - limx0sinxcos4xx+xcos5x\lim _ { x \rightarrow 0 } \frac { \sin x \cos 4 x } { x + x \cos 5 x }

(Multiple Choice)
4.9/5
(33)

Prove the limit statement -You are asked to make some circular cylinders, each with a cross-sectional area of 9 cm29 \mathrm {~cm} ^ { 2 } . To do this, you need to know how much deviation from the ideal cylinder diameter of x0=1.93 cmx _ { 0 } = 1.93 \mathrm {~cm} you can allow and still have the area come within 0.1 cm20.1 \mathrm {~cm} ^ { 2 } of the required 9 cm29 \mathrm {~cm} ^ { 2 } . To find out, let A=π(x2)2A = \pi \left( \frac { x } { 2 } \right) ^ { 2 } and look for the interval in which you must hold xx to make A9<0.1| \mathrm { A } - 9 | < 0.1 . What interval do you find?

(Multiple Choice)
4.7/5
(32)

Find the limit if it exists. - limx19x(x+4)(x4)\lim _ { x \rightarrow 1 } 9 x ( x + 4 ) ( x - 4 )

(Multiple Choice)
4.8/5
(37)

Use the graph to estimate the specified limit. -  Find limx0f(x)\text { Find } \lim _ { x \rightarrow 0 } f ( x )  Use the graph to estimate the specified limit. - \text { Find } \lim _ { x \rightarrow 0 } f ( x )

(Multiple Choice)
4.8/5
(33)

Provide an appropriate response. -Given ε>0\varepsilon > 0 , find an interval I=(5δ,5),δ>0I = ( 5 - \delta , 5 ) , \delta > 0 , such that if xx lies in II , then 5x<ε\sqrt { 5 - x } < \varepsilon . What limit is being verified and what is its value?

(Multiple Choice)
5.0/5
(32)

Provide an appropriate response. -Write the formal notation for the principle "the limit of a quotient is the quotient of the limits" and include a statement of any restrictions on the principle.

(Multiple Choice)
4.8/5
(37)

The graph below shows the number of tuberculosis deaths in the United States from 1989 to 1998. The graph below shows the number of tuberculosis deaths in the United States from 1989 to 1998.   Estimate the average rate of change in tuberculosis deaths from 1993 to 1995. Estimate the average rate of change in tuberculosis deaths from 1993 to 1995.

(Multiple Choice)
4.9/5
(36)

Find all points where the function is discontinuous. -Find all points where the function is discontinuous. -

(Multiple Choice)
4.9/5
(47)

Find the limit, if it exists. - limx2x24x23x+2\lim _ { x \rightarrow 2 } \frac { x ^ { 2 } - 4 } { x ^ { 2 } - 3 x + 2 }

(Multiple Choice)
4.8/5
(41)

Use the graph to estimate the specified limit. -Find lim x \rightarrow 0 f(x)  Use the graph to estimate the specified limit. -Find lim x  \rightarrow 0 f(x)

(Multiple Choice)
4.9/5
(37)

Use the table of values of f to estimate the limit. - Let f(x)=, find f(x) x -0.1 -0.01 -0.001 0.001 0.01 0.1 f(x) 5.99640065 5.99640065

(Multiple Choice)
4.7/5
(47)

Prove the limit statement -Select the correct statement for the definition of the limit: limx0f(x)=L\lim _ { x \rightarrow 0 } f ( x ) = L means that___________

(Multiple Choice)
4.9/5
(46)

Use a CAS to plot the function near the point x0 being approached. From your plot guess the value of the limit. - limx01x1x\lim _ { x \rightarrow 0 } \frac { \sqrt { 1 - x } - 1 } { x }

(Multiple Choice)
4.9/5
(40)
Showing 181 - 200 of 213
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)