Exam 2: Limits and Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the limit LL for the given function ff , the point x0x _ { 0 } , and the positive number ε\varepsilon . Then find a number δ>0\delta > 0 such that, for all xt0<xx0<δf(x)L<εx _ { t } 0 < \left| x - x _ { 0 } \right| < \delta \Rightarrow | f ( x ) - L | < \varepsilon . - f(x)=x2+4x+21x+7,x0=7,ε=0.03f ( x ) = \frac { x ^ { 2 } + 4 x + - 21 } { x + 7 } , x _ { 0 } = - 7 , \varepsilon = 0.03

(Multiple Choice)
4.8/5
(40)

Use the table to estimate the rate of change of y at the specified value of x. -When exposed to ethylene gas, green bananas will ripen at an accelerated rate. The number of days for ripening becomes shorter for longer exposure times. Assume that the table below gives average ripening times of Bananas for several different ethylene exposure times: Exposure timeRipening Time (minutes) (days) 10 4.2 15 3.5 20 2.6 25 2.1 30 1.1 Plot the data and then find a line approximating the data. With the aid of this line, find the limit of the average ripening Time as the exposure time to ethylene approaches 0. Round your answer to the nearest tenth.  Use the table to estimate the rate of change of y at the specified value of x. -When exposed to ethylene gas, green bananas will ripen at an accelerated rate. The number of days for ripening becomes shorter for longer exposure times. Assume that the table below gives average ripening times of Bananas for several different ethylene exposure times:   \begin{array}{l} \text { Exposure timeRipening Time }\\ \begin{array} { l | l }  \text { (minutes) } & \text { (days) } \\ \hline 10 & 4.2 \\ 15 & 3.5 \\ 20 & 2.6 \\ 25 & 2.1 \\ 30 & 1.1 \end{array} \end{array}   Plot the data and then find a line approximating the data. With the aid of this line, find the limit of the average ripening Time as the exposure time to ethylene approaches 0. Round your answer to the nearest tenth.

(Multiple Choice)
4.9/5
(28)

Provide an appropriate response. -The statement "the limit of a constant times a function is the constant times the limit" follows from a combination of two fundamental limit principles. What are they?

(Multiple Choice)
4.9/5
(34)

Provide an appropriate response. -Given limx0f(x)=Ll,limx0+f(x)=Lr\lim _ { x \rightarrow 0 ^ { - } } \mathrm { f } ( \mathrm { x } ) = \mathrm { L } _ { \mathrm { l } } , \lim _ { \mathrm { x } - 0 ^ { + } } \mathrm { f } ( \mathrm { x } ) = \mathrm { L } _ { \mathrm { r } } , and LlLr\mathrm { L } \mathrm { l } \neq \mathrm { L } _ { \mathrm { r } } , which of the following statements is true? I. limx0f(x)=Ll\lim _ { x \rightarrow 0 } f ( x ) = L _ { l } II. limx0f(x)=Lr\lim _ { x \rightarrow 0 } f ( x ) = L _ { r } III. limx0f(x)\lim _ { x \rightarrow 0 } f ( x ) does not exist.

(Multiple Choice)
4.8/5
(38)

Find the limit. - limx1x3x+2\lim _ { x \rightarrow 1 } \frac { x } { 3 x + 2 }

(Multiple Choice)
4.8/5
(41)

Find the limit LL for the given function ff , the point x0x _ { 0 } , and the positive number ε\varepsilon . Then find a number δ>0\delta > 0 such that, for all xt0<xx0<δf(x)L<εx _ { t } 0 < \left| x - x _ { 0 } \right| < \delta \Rightarrow | f ( x ) - L | < \varepsilon . - f(x)=x+5,L=3,x0=4, and ε=1f ( x ) = \sqrt { x + 5 } , L = 3 , x 0 = 4 , \text { and } \varepsilon = 1

(Multiple Choice)
4.8/5
(36)

Give an appropriate answer. - f(x)=3x2+4f ( x ) = 3 x ^ { 2 } + 4 for x0=4x _ { 0 } = 4

(Multiple Choice)
4.8/5
(35)

Find the slope of the curve at the given point P and an equation of the tangent line at P. - y=x2+11x15,P(1,3)y = x ^ { 2 } + 11 x - 15 , P ( 1 , - 3 )

(Multiple Choice)
4.8/5
(30)

Find the limit if it exists. - limx8(5x23x6)\lim _ { x \rightarrow 8 } \left( 5 x ^ { 2 } - 3 x - 6 \right)

(Multiple Choice)
4.8/5
(47)

Find the limit, if it exists. - limx7x249x7\lim _ { x \rightarrow 7 } \frac { x ^ { 2 } - 49 } { x - 7 }

(Multiple Choice)
4.9/5
(40)

Find the limit, if it exists. - limh0(1+h)1/31h\lim _ { h \rightarrow 0 } \frac { ( 1 + h ) ^ { 1 / 3 } - 1 } { h }

(Multiple Choice)
4.7/5
(36)

Find the limit, if it exists. - limh07x+hx3(xh)\lim _ { h \rightarrow 0 } \frac { 7 x + h } { x ^ { 3 } ( x - h ) }

(Multiple Choice)
4.9/5
(37)

Find all points where the function is discontinuous. -Find all points where the function is discontinuous. -

(Multiple Choice)
4.8/5
(41)

Find the limit if it exists. - limx625x3/4\lim _ { x - 625 } x ^ { 3 / 4 }

(Multiple Choice)
4.7/5
(40)

Use the table of values of f to estimate the limit. -  Let f(x)=x25, find limxθf(x)\text { Let } f(x)=x^{2}-5 \text {, find } \lim _{x \rightarrow \theta} f(x) -0.1 -0.01 -0.001 0.001 0.01 0.1 ()

(Multiple Choice)
4.7/5
(35)

Find all points where the function is discontinuous. -Find all points where the function is discontinuous. -

(Multiple Choice)
4.9/5
(44)

Find the limit LL for the given function ff , the point x0x _ { 0 } , and the positive number ε\varepsilon . Then find a number δ>0\delta > 0 such that, for all xt0<xx0<δf(x)L<εx _ { t } 0 < \left| x - x _ { 0 } \right| < \delta \Rightarrow | f ( x ) - L | < \varepsilon . -  Find the limit  L  for the given function  f , the point  x _ { 0 } , and the positive number  \varepsilon . Then find a number  \delta > 0  such that, for all  x _ { t } 0 < \left| x - x _ { 0 } \right| < \delta \Rightarrow | f ( x ) - L | < \varepsilon . -

(Multiple Choice)
4.8/5
(44)

Use a CAS to plot the function near the point x0 being approached. From your plot guess the value of the limit. - limx0416x2x\lim _ { x \rightarrow 0 } \frac { 4 - \sqrt { 16 - x ^ { 2 } } } { x }

(Multiple Choice)
5.0/5
(35)

Find the limit, if it exists. - limx6x2+3x18x2+2x24\lim _ { x \rightarrow 6 } \frac { x ^ { 2 } + 3 x - 18 } { x ^ { 2 } + 2 x - 24 }

(Multiple Choice)
4.8/5
(28)

Find the limit. -If limx1f(x)3x4=4\lim _ { x \rightarrow 1 } \frac { f ( x ) - 3 } { x - 4 } = 4 , find limx1f(x)\lim _ { x \rightarrow 1 } f ( x ) .

(Multiple Choice)
4.9/5
(32)
Showing 101 - 120 of 213
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)