Exam 2: Limits and Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Give an appropriate answer. - f(x)=x for x0=13f ( x ) = \sqrt { x } \text { for } x _ { 0 } = 13

(Multiple Choice)
4.8/5
(33)

Find the limit LL for the given function ff , the point x0x _ { 0 } , and the positive number ε\varepsilon . Then find a number δ>0\delta > 0 such that, for all xt0<xx0<δf(x)L<εx _ { t } 0 < \left| x - x _ { 0 } \right| < \delta \Rightarrow | f ( x ) - L | < \varepsilon . -  Find the limit  L  for the given function  f , the point  x _ { 0 } , and the positive number  \varepsilon . Then find a number  \delta > 0  such that, for all  x _ { t } 0 < \left| x - x _ { 0 } \right| < \delta \Rightarrow | f ( x ) - L | < \varepsilon . -

(Multiple Choice)
4.8/5
(33)

Find all points where the function is discontinuous. -Find all points where the function is discontinuous. -

(Multiple Choice)
4.8/5
(45)

Find the limit. - limx0(x25)\lim _ { x \rightarrow 0 } \left( x ^ { 2 } - 5 \right)

(Multiple Choice)
4.7/5
(23)

Use a CAS to plot the function near the point x0 being approached. From your plot guess the value of the limit. - limx3x29x2+74\lim _ { x \rightarrow 3 } \frac { x ^ { 2 } - 9 } { \sqrt { x ^ { 2 } + 7 } - 4 }

(Multiple Choice)
4.9/5
(35)

Use the table to estimate the rate of change of y at the specified value of x. -x = 1. 0.900 -0.05263 0.990 -0.00503 0.999 -0.0005 1.000 0.0000 1.001 0.0005 1.010 0.00498 1.100 0.04762

(Multiple Choice)
4.8/5
(44)

Find the limit. - limx0(x2)\lim _ { x \rightarrow 0 } ( \sqrt { x } - 2 )

(Multiple Choice)
4.9/5
(44)

Find the limit, if it exists. - limx7x2+2x63x7\lim _ { x \rightarrow 7 } \frac { x ^ { 2 } + 2 x - 63 } { x - 7 }

(Multiple Choice)
4.8/5
(44)

Find the limit, if it exists. - limx0x3+12x25x5x\lim _ { x \rightarrow 0 } \frac { x ^ { 3 } + 12 x ^ { 2 } - 5 x } { 5 x }

(Multiple Choice)
4.7/5
(39)

Use the graph to evaluate the limit. - limx0f(x)\lim _ { x \rightarrow 0 } f ( x )  Use the graph to evaluate the limit. - \lim _ { x \rightarrow 0 } f ( x )

(Multiple Choice)
4.7/5
(32)

 Find the limit using limx=0sinxx=1\text { Find the limit using } \lim _ { x = 0 } \frac { \sin x } { x } = 1 \text {. } - limx53x(x5)x5\lim _ { x \rightarrow 5 ^ { - } } \frac { \sqrt { 3 x } ( x - 5 ) } { | x - 5 | }

(Multiple Choice)
4.7/5
(38)

Give an appropriate answer. -Suppose limxθf(x)=1\lim _ { x \rightarrow \theta } f ( x ) = 1 and limxθg(x)=3\lim _ { x \rightarrow \theta } g ( x ) = - 3 . Name the limit rules that are used to accomplish steps (a), (b), and (c) of the following calculation.  Give an appropriate answer. -Suppose  \lim _ { x \rightarrow \theta } f ( x ) = 1  and  \lim _ { x \rightarrow \theta } g ( x ) = - 3 . Name the limit rules that are used to accomplish steps (a), (b), and (c) of the following calculation.

(Multiple Choice)
4.7/5
(33)

Give an appropriate answer. - f(x)=5x for x0=6f ( x ) = \frac { 5 } { x } \text { for } x _ { 0 } = 6

(Multiple Choice)
4.7/5
(37)

 Find the limit using limx=0sinxx=1\text { Find the limit using } \lim _ { x = 0 } \frac { \sin x } { x } = 1 \text {. } - limx2+7x25+x\lim _ { x \rightarrow 2 ^ { + } } \sqrt { \frac { 7 x ^ { 2 } } { 5 + x } }

(Multiple Choice)
4.7/5
(36)

Prove the limit statement - limx63x214x24x6=22\lim _ { x \rightarrow 6 } \frac { 3 x ^ { 2 } - 14 x - 24 } { x - 6 } = 22

(Essay)
4.8/5
(35)

Give an appropriate answer. -Let limx4f(x)=7\lim _ { x \rightarrow 4 } f ( x ) = 7 and limx4g(x)=7\lim _ { x \rightarrow 4 } g ( x ) = - 7 . Find limx4[4f(x)7g(x)9+g(x)]\lim _ { x \rightarrow 4 } \left[ \frac { - 4 f ( x ) - 7 g ( x ) } { 9 + g ( x ) } \right] .

(Multiple Choice)
4.9/5
(37)

 Find the limit using limx=0sinxx=1\text { Find the limit using } \lim _ { x = 0 } \frac { \sin x } { x } = 1 \text {. } - limx0sin5xx\lim _ { x \rightarrow 0 } \frac { \sin 5 x } { x }

(Multiple Choice)
4.9/5
(31)

Find all points where the function is discontinuous. -Find all points where the function is discontinuous. -

(Multiple Choice)
4.8/5
(39)

Prove the limit statement -Ohm's Law for electrical circuits is stated V=RI\mathrm { V } = \mathrm { RI } , where V\mathrm { V } is a constant voltage, R\mathrm { R } is the resistance in ohms and I\mathrm { I } is the current in amperes. Your firm has been asked to supply the resistors for a circuit in which V\mathrm { V } will be 12 volts and II is to be 3±0.13 \pm 0.1 amperes. In what interval does RR have to lie for I to be within 0.10.1 amps of the target value I0=3?I _ { 0 } = 3 ?

(Multiple Choice)
4.7/5
(35)

Use the graph to evaluate the limit. - limx0f(x)\lim _ { x \rightarrow 0 } f ( x )  Use the graph to evaluate the limit. - \lim _ { x \rightarrow 0 } f ( x )

(Multiple Choice)
4.8/5
(32)
Showing 141 - 160 of 213
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)