Exam 10: Infinite Sequences and Series

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Write the first four elements of the sequence. -sin (n π\pi )

(Multiple Choice)
4.8/5
(43)

Find the limit of the sequence if it converges; otherwise indicate divergence. - an=ln(9n+5)ln(4n+9)a _ { n } = \ln ( 9 n + 5 ) - \ln ( 4 n + 9 )

(Multiple Choice)
4.9/5
(38)

Find the smallest value of N that will make the inequality hold for all n > N. -A company's annual revenue for the period since 2000 can be modeled by the function Rn = 2.11(1.06)n, where R is in millions of dollars and n = 0 corresponds to 2000. Assuming the model accurately predicts future Revenue, find the year in which the revenue first exceeds $3.10 million.

(Multiple Choice)
4.8/5
(44)

Find the smallest value of N that will make the inequality hold for all n > N. - 0.6n1<103| \sqrt [ n ] { 0.6 } - 1 | < 10 ^ { - 3 }

(Multiple Choice)
4.9/5
(36)

Find the sum of the series. - n=1(1)n183n\sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n - 1 } \frac { 8 } { 3 ^ { n } }

(Multiple Choice)
4.8/5
(28)

Find the smallest value of N that will make the inequality hold for all n > N. - an=(1+0.153/n)na _ { n } = ( 1 + 0.153 / n ) ^ { n }

(Multiple Choice)
4.9/5
(25)

Write the first four elements of the sequence. - (13)n\left( \frac { 1 } { 3 } \right) ^ { n }

(Multiple Choice)
4.7/5
(38)

Assume that the sequence converges and find its limit. - a1=3,an+1=721+ana _ { 1 } = 3 , a _ { n + 1} = \frac { 72 } { 1 + a _ { n } }

(Multiple Choice)
4.9/5
(38)

Determine if the sequence is monotonic and if it is bounded. - an=(n+2)!(n+1)!a _ { n } = \frac { ( n + 2 ) ! } { ( n + 1 ) ! }

(Multiple Choice)
4.9/5
(44)

Find the limit of the sequence if it converges; otherwise indicate divergence. - an=4nna _ { n } = \sqrt [ n ] { 4 n }

(Multiple Choice)
4.8/5
(34)

Determine if the series converges or diverges. If the series converges, find its sum. - n=1(tan1(n+1)tan1n)\sum _ { n = 1 } ^ { \infty } \left( \tan ^ { - 1 } ( n + 1 ) - \tan ^ { - 1 } n \right)

(Multiple Choice)
4.7/5
(41)

Find the smallest value of N that will make the inequality hold for all n > N. - an=12911/na _ { n } = 1291 ^ { 1 / n }

(Multiple Choice)
4.8/5
(40)

Determine if the series converges or diverges; if the series converges, find its sum. - n=1ln8n\sum _ { n = 1 } ^ { \infty } \ln \frac { 8 } { n }

(Multiple Choice)
4.9/5
(39)

Find the smallest value of N that will make the inequality hold for all n > N. - an=cosna _ { n } = \cos n

(Multiple Choice)
5.0/5
(35)

Find the smallest value of N that will make the inequality hold for all n > N. - 0.8n1<102| \sqrt [ n ] { 0.8 } - 1 | < 10 ^ { - 2 }

(Multiple Choice)
4.8/5
(35)

Determine if the sequence is monotonic and if it is bounded. - an=4n(4n)!a _ { n } = \frac { 4 ^ { n } } { ( 4 n ) ! }

(Multiple Choice)
4.8/5
(30)

Use the nth-Term Test for divergence to show that the series is divergent, or state that the test is inconclusive. - n=1ln10n\sum _ { n = 1 } ^ { \infty } \ln \frac { 10 } { n }

(Multiple Choice)
4.9/5
(39)

Find the sum of the series. - n=1(13n16n)\sum _ { n = 1 } ^ { \infty } \left( \frac { 1 } { 3 ^ { n } } - \frac { 1 } { 6 ^ { n } } \right)

(Multiple Choice)
4.9/5
(41)

Find the sum of the geometric series for those x for which the series converges. - n=08nxn\sum _ { n = 0 } ^ { \infty } - 8 ^ { n } x ^ { n }

(Multiple Choice)
4.9/5
(42)

Determine whether the nonincreasing sequence converges or diverges. - an=1+3nna _ { n } = \frac { 1 + \sqrt { 3 n } } { n }

(Multiple Choice)
4.8/5
(37)
Showing 21 - 40 of 155
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)