Exam 10: Infinite Sequences and Series

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the smallest value of N that will make the inequality hold for all n > N. - an=n!nna _ { n } = \frac { n ! } { n ^ { n } }

(Multiple Choice)
4.8/5
(38)

Find the limit of the sequence if it converges; otherwise indicate divergence. - an=(1)n(12n)a _ { n } = ( - 1 ) ^ { n } \left( 1 - \frac { 2 } { n } \right)

(Multiple Choice)
4.8/5
(41)

Find a formula for the nth partial sum of the series and use it to find the series' sum if the series converges. - 557+5495343++(1)n157n1+5 - \frac { 5 } { 7 } + \frac { 5 } { 49 } - \frac { 5 } { 343 } + \ldots + ( - 1 ) ^ { n - 1 } \frac { 5 } { 7 ^ { n - 1 } } + \ldots

(Multiple Choice)
4.9/5
(38)

Find the sum of the geometric series for those x for which the series converges. - n=0(1)n(x610)n\sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } \left( \frac { x - 6 } { 10 } \right) ^ { n }

(Multiple Choice)
4.7/5
(39)

Find a formula for the nth partial sum of the series and use it to find the series' sum if the series converges. - 813+824+835++8n(n+2)+\frac { 8 } { 1 \cdot 3 } + \frac { 8 } { 2 \cdot 4 } + \frac { 8 } { 3 \cdot 5 } + \ldots + \frac { 8 } { n ( n + 2 ) } + \ldots

(Multiple Choice)
4.8/5
(44)

Find the sum of the geometric series for those x for which the series converges. - n=0(9x+1)n\sum _ { n = 0 } ^ { \infty } ( 9 x + 1 ) ^ { n }

(Multiple Choice)
4.8/5
(36)

Find the smallest value of N that will make the inequality hold for all n > N. - 5nn!<102\frac { 5 ^ { n } } { n ! } < 10 ^ { - 2 }

(Multiple Choice)
4.8/5
(42)

Find the sum of the geometric series for those x for which the series converges. - n=0(x+2)n\sum _ { n = 0 } ^ { \infty } ( x + 2 ) ^ { n }

(Multiple Choice)
4.7/5
(39)

Find the limit of the sequence if it converges; otherwise indicate divergence. - an=8+5n+5n47n41n37a _ { n } = \frac { 8 + 5 n + 5 n ^ { 4 } } { 7 n ^ { 4 } - 1 n ^ { 3 } - 7 }

(Multiple Choice)
4.8/5
(32)

Find a formula for the nth partial sum of the series and use it to find the series' sum if the series converges. - 231+253+275++2(2n+1)(2n1)+\frac { 2 } { 3 \cdot 1 } + \frac { 2 } { 5 \cdot 3 } + \frac { 2 } { 7 \cdot 5 } + \ldots + \frac { 2 } { ( 2 n + 1 ) ( 2 n - 1 ) } + \ldots

(Multiple Choice)
4.9/5
(37)

Find the smallest value of N that will make the inequality hold for all n > N. - n22n<102\frac { \mathrm { n } ^ { 2 } } { 2 ^ { \mathrm { n } } } < 10 ^ { - 2 }

(Multiple Choice)
4.8/5
(35)

A recursion formula and the initial term(s) of a sequence are given. Write out the first five terms of the sequence. - a1=2,an+1=(1)n+1ana _ { 1 } = 2 , a _ { n + 1 } = \frac { ( - 1 ) ^ { n + 1 } } { a _ { n } }

(Multiple Choice)
4.9/5
(40)

Provide an appropriate response. -A sequence of rational numbers {rn}\left\{ r _ { n } \right\} is defined by r1=11r _ { 1 } = \frac { 1 } { 1 } , and if rn=abr _ { n } = \frac { a } { b } then rn+1=a+5ba+br _ { n } + 1 = \frac { a + 5 b } { a + b } . Find limnrn\lim _ { n \rightarrow } r _ { n } . Hint: Compute the square of several terms of the sequence on a calculator.

(Multiple Choice)
4.8/5
(40)

Determine if the sequence is monotonic and if it is bounded. - an=4n7nn!a _ { n } = \frac { 4 ^ { n } } { 7 ^ { n } n ! }

(Multiple Choice)
4.8/5
(36)

Find the smallest value of N that will make the inequality hold for all n > N. - an=n+1na _ { n } = \sqrt [ n ] { n + 1 }

(Multiple Choice)
4.8/5
(40)

Find the smallest value of N that will make the inequality hold for all n > N. - 10nn!<103\frac { 10 ^ { n } } { n ! } < 10 ^ { - 3 }

(Multiple Choice)
4.8/5
(41)

Determine whether the nonincreasing sequence converges or diverges. - an=8n+1+7nn8na _ { n } = \frac { 8 ^ { n + 1 } + 7 ^ { n } } { n \cdot 8 ^ { n } }

(Multiple Choice)
4.8/5
(33)

Find a formula for the nth term of the sequence. - 8,10,12,14,168,10,12,14,16 (every other integer starting with 8 )

(Multiple Choice)
4.8/5
(38)

Determine if the series converges or diverges. If the series converges, find its sum. - n=1(1ln(n+3)1ln(n+4))\sum _ { n = 1 } ^ { \infty } \left( \frac { 1 } { \ln ( n + 3 ) } - \frac { 1 } { \ln ( n + 4 ) } \right)

(Multiple Choice)
4.8/5
(42)

Write the first four elements of the sequence. - n+13n1\frac { n + 1 } { 3 n - 1 }

(Multiple Choice)
4.8/5
(35)
Showing 61 - 80 of 155
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)