Exam 10: Infinite Sequences and Series

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the limit of the sequence if it converges; otherwise indicate divergence. - an=ln(n+7)n1/na _ { n } = \frac { \ln ( n + 7 ) } { n ^ { 1 / n } }

(Multiple Choice)
4.8/5
(38)

Determine if the geometric series converges or diverges. If it converges, find its sum. - 16+(16)2+(16)3+(16)4+(16)5+\frac { 1 } { 6 } + \left( \frac { 1 } { 6 } \right) ^ { 2 } + \left( \frac { 1 } { 6 } \right) ^ { 3 } + \left( \frac { 1 } { 6 } \right) ^ { 4 } + \left( \frac { 1 } { 6 } \right) ^ { 5 } + \ldots

(Multiple Choice)
4.7/5
(34)

Determine if the sequence is monotonic and if it is bounded. - an=9n+1n+1a _ { n } = \frac { 9 n + 1 } { n + 1 }

(Multiple Choice)
4.7/5
(43)

Find the sum of the series. - n=813n\sum _ { n = 8 } ^ { \infty } \frac { 1 } { 3 ^ { n } }

(Multiple Choice)
4.8/5
(37)

Determine if the series converges or diverges; if the series converges, find its sum. - n=0(1+3n)3n\sum _ { n = 0 } ^ { \infty } \left( 1 + \frac { - 3 } { n } \right) ^ { 3 n }

(Multiple Choice)
4.8/5
(37)

Find the sum of the series. - n=0(1)n87n\sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } \frac { 8 } { 7 ^ { n } }

(Multiple Choice)
4.7/5
(25)

Determine if the series converges or diverges; if the series converges, find its sum. - n=010\sum _ { n = 0 } ^ { \infty } \sqrt { 10 }

(Multiple Choice)
4.9/5
(38)

Find the smallest value of N that will make the inequality hold for all n > N. - an=2nn!a _ { n } = \frac { 2 ^ { n } } { n ! }

(Multiple Choice)
4.7/5
(36)

Determine if the sequence is monotonic and if it is bounded. - n!5n\frac { \mathrm { n } ! } { 5 ^ { n } }

(Multiple Choice)
4.9/5
(46)

Find the values of x for which the geometric series converges. - n=0(x102)n\sum _ { n = 0 } ^ { \infty } \left( \frac { x - 10 } { 2 } \right) ^ { n }

(Multiple Choice)
4.8/5
(37)

Find the smallest value of N that will make the inequality hold for all n > N. -At a plant that packages bottled spring water, the water is passed through a sequence of ion-exchange filters to reduce the sodium content prior to bottling. Each filter removes 74% of the sodium present in the water passing Through it. Determine the number of filters that must be used to reduce the sodium concentration from 22 Parts-per-million to 3.61 parts-per-million.

(Multiple Choice)
4.8/5
(30)

Determine if the series converges or diverges; if the series converges, find its sum. - n=0sin(n+1)π28n\sum _ { n = 0 } ^ { \infty } \frac { \sin \frac { ( n + 1 ) \pi } { 2 } } { 8 ^ { n } }

(Multiple Choice)
4.8/5
(27)

Determine if the series converges or diverges. If the series converges, find its sum. - n=17n(2n1)2(2n+1)2 \sum_{n=1}^{\infty} \frac{7 n}{(2 n-1)^{2}(2 n+1)^{2}}

(Multiple Choice)
4.8/5
(45)

Find the sum of the geometric series for those x for which the series converges. - n=04nxn\sum _ { n = 0 } ^ { \infty } 4 ^ { n } x ^ { n }

(Multiple Choice)
4.7/5
(37)

Find the limit of the sequence if it converges; otherwise indicate divergence. - an=5+3n3+2na _ { n } = \frac { 5 + 3 n } { 3 + 2 n }

(Multiple Choice)
4.9/5
(26)

Find the values of x for which the geometric series converges. - n=04nxn\sum _ { n = 0 } ^ { \infty } - 4 ^ { n } x ^ { n }

(Multiple Choice)
4.8/5
(36)

Find a formula for the nth partial sum of the series and use it to find the series' sum if the series converges. - 723+734+745++7(n+1)(n+2)+\frac { 7 } { 2 \cdot 3 } + \frac { 7 } { 3 \cdot 4 } + \frac { 7 } { 4 \cdot 5 } + \ldots + \frac { 7 } { ( n + 1 ) ( n + 2 ) } + \ldots

(Multiple Choice)
4.8/5
(28)

Find the values of x for which the geometric series converges. - n=0(1)n(4x)2n\sum _ { \mathrm { n } = 0 } ^ { \infty } ( - 1 ) ^ { \mathrm { n } } ( 4 \mathrm { x } ) ^ { 2 \mathrm { n } }

(Multiple Choice)
4.8/5
(29)

Find the smallest value of N that will make the inequality hold for all n > N. - an=ntan1na _ { n } = n \tan \frac { 1 } { n }

(Multiple Choice)
4.9/5
(49)

Assume that the sequence converges and find its limit. - a1=5,an+1=5ana _ { 1 } = 5 , a _ { n + 1} = \sqrt { 5 a _ { n } }

(Multiple Choice)
4.8/5
(31)
Showing 121 - 140 of 155
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)