Exam 10: Infinite Sequences and Series

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Determine if the series converges or diverges; if the series converges, find its sum. - n=0cosnπ7n\sum _ { n = 0 } ^ { \infty } \frac { \cos n \pi } { 7 ^ { n } }

(Multiple Choice)
4.8/5
(36)

Determine if the series converges or diverges; if the series converges, find its sum. - n=0n!900n\sum _ { n = 0 } ^ { \infty } \frac { n ! } { 900 ^ { n } }

(Multiple Choice)
4.8/5
(42)

Find a formula for the nth term of the sequence. - 9,8,7,6,5- 9 , - 8 , - 7 , - 6 , - 5 (integers beginning with 9- 9 )

(Multiple Choice)
4.9/5
(35)

Determine if the geometric series converges or diverges. If it converges, find its sum. - 1+(9)+(9)2+(9)3+(9)4+1 + ( - 9 ) + ( - 9 ) ^ { 2 } + ( - 9 ) ^ { 3 } + ( - 9 ) ^ { 4 } + \ldots

(Multiple Choice)
4.9/5
(39)

A recursion formula and the initial term(s) of a sequence are given. Write out the first five terms of the sequence. - a1=1,a2=3,an+2=an+1ana _ { 1 } = 1 , a _ { 2 } = 3 , a _ { n + 2 } = a _ { n + 1 } - a _ { n }

(Multiple Choice)
4.8/5
(35)

Find a formula for the nth partial sum of the series and use it to find the series' sum if the series converges. - 91222+152232+213242++3(2n+1)n2(n+1)2+\frac { 9 } { 1 ^ { 2 } \cdot 2 ^ { 2 } } + \frac { 15 } { 2 ^ { 2 } \cdot 3 ^ { 2 } } + \frac { 21 } { 3 ^ { 2 } \cdot 4 ^ { 2 } } + \ldots + \frac { 3 ( 2 n + 1 ) } { n ^ { 2 } ( n + 1 ) ^ { 2 } } + \ldots

(Multiple Choice)
4.8/5
(35)

Find the values of x for which the geometric series converges. - n=0(7x+1)n\sum _ { n = 0 } ^ { \infty } ( 7 x + 1 ) ^ { n }

(Multiple Choice)
4.9/5
(37)

Find the limit of the sequence if it converges; otherwise indicate divergence. - an=(4n)4/na _ { n } = \left( \frac { 4 } { n } \right) ^ { 4 / n }

(Multiple Choice)
4.8/5
(39)

Find a formula for the nth term of the sequence. - 0,23,0,23,00 , \frac { 2 } { 3 } , 0 , \frac { 2 } { 3 } , 0 (alternating 0 's and 23\frac { 2 } { 3 } 's)

(Multiple Choice)
4.7/5
(24)

Determine if the series converges or diverges; if the series converges, find its sum. - n=1(1)n143n\sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n - 1 } \frac { 4 } { 3 ^ { n } }

(Multiple Choice)
4.9/5
(34)

Find the values of x for which the geometric series converges. - n=0(x+9)n\sum _ { n = 0 } ^ { \infty } ( x + 9 ) ^ { n }

(Multiple Choice)
4.8/5
(34)

Determine whether the nonincreasing sequence converges or diverges. - a1=1,an+1=2an8a _ { 1 } = 1 , a _ { n + 1 } = 2 a _ { n } - 8

(Multiple Choice)
4.8/5
(41)

A recursion formula and the initial term(s) of a sequence are given. Write out the first five terms of the sequence. - a1=5,an+1=(1)nan a_{1}=5, a_{n+1}=(-1)^{n} a_{n}

(Multiple Choice)
4.8/5
(37)

A recursion formula and the initial term(s) of a sequence are given. Write out the first five terms of the sequence. - a1=4,an+1=an\mathrm { a } _ { 1 } = 4 , \mathrm { a } _ { \mathrm { n } + 1 } = - \mathrm { a } _ { \mathrm { n } }

(Multiple Choice)
4.8/5
(40)

Find the smallest value of N that will make the inequality hold for all n > N. - 2nn1<103| \sqrt [ n ] { 2 n } - 1 | < 10 ^ { - 3 }

(Multiple Choice)
4.9/5
(36)

Find the smallest value of N that will make the inequality hold for all n > N. - an=cosnn2a _ { n } = \frac { \cos n } { n ^ { 2 } }

(Multiple Choice)
4.8/5
(39)

Find a formula for the nth partial sum of the series and use it to find the series' sum if the series converges. - 212+223+234++2n(n+1)+\frac { 2 } { 1 \cdot 2 } + \frac { 2 } { 2 \cdot 3 } + \frac { 2 } { 3 \cdot 4 } + \ldots + \frac { 2 } { n ( n + 1 ) } + \ldots

(Multiple Choice)
4.8/5
(33)

Express the number as the ratio of two integers. - 0.6161610.616161 \ldots

(Multiple Choice)
4.7/5
(23)

Find a formula for the nth partial sum of the series and use it to find the series' sum if the series converges. - 7+14+28++72n1+7 + 14 + 28 + \ldots + 7 \cdot 2 ^ { n - 1 } + \ldots

(Multiple Choice)
4.8/5
(37)

A recursion formula and the initial term(s) of a sequence are given. Write out the first five terms of the sequence. - a1=1,an+1=an3a _ { 1 } = 1 , a _ { n + 1 } = a _ {{ n } ^ { 3 }}

(Multiple Choice)
4.9/5
(40)
Showing 81 - 100 of 155
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)