Exam 10: Infinite Sequences and Series

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the limit of the sequence if it converges; otherwise indicate divergence. - an=tan1nn7a _ { n } = \frac { \tan ^ { - 1 } n } { \sqrt [ 7 ] { n } }

(Multiple Choice)
4.9/5
(43)

Find the sum of the series. - n=0(13n+14n)\sum _ { n = 0 } ^ { \infty } \left( \frac { 1 } { 3 ^ { n } } + \frac { 1 } { 4 ^ { n } } \right)

(Multiple Choice)
4.7/5
(34)

Find the limit of the sequence if it converges; otherwise indicate divergence. - an=ln(1+2n)na _ { n } = \ln \left( 1 + \frac { 2 } { n } \right) ^ { n }

(Multiple Choice)
4.9/5
(39)

Find a formula for the nth partial sum of the series and use it to find the series' sum if the series converges. - 2+27+249++27n1+2 + \frac { 2 } { 7 } + \frac { 2 } { 49 } + \ldots + \frac { 2 } { 7 ^ { n - 1 } } + \ldots

(Multiple Choice)
4.7/5
(34)

Use the nth-Term Test for divergence to show that the series is divergent, or state that the test is inconclusive. - n=1cos8n\sum _ { n = 1 } ^ { \infty } \cos \frac { 8 } { n }

(Multiple Choice)
4.9/5
(38)

Find the limit of the sequence if it converges; otherwise indicate divergence. - an=7+(0.3)na _ { n } = 7 + ( 0.3 ) ^ { n }

(Multiple Choice)
4.9/5
(43)

Assume that the sequence converges and find its limit. - a1=3,an+1=8+2ana _ { 1 } = - 3 , a _ { n + 1 }= \sqrt { 8 + 2 a _ { n } }

(Multiple Choice)
4.8/5
(33)

Express the number as the ratio of two integers. - 0.5925920.592592 \ldots

(Multiple Choice)
4.8/5
(33)

Find the limit of the sequence if it converges; otherwise indicate divergence. - an=1+(1)n+(1)n(n+1)a _ { n } = 1 + ( - 1 ) ^ { n } + ( - 1 ) ^ { n ( n + 1 ) }

(Multiple Choice)
4.9/5
(25)

Write the first four elements of the sequence. - ln(n+1)n3\frac { \ln ( n + 1 ) } { n ^ { 3 } }

(Multiple Choice)
4.8/5
(23)

Find the smallest value of N that will make the inequality hold for all n > N. - n22n<103\frac { n ^ { 2 } } { 2 ^ { n } } < 10 ^ { - 3 }

(Multiple Choice)
4.8/5
(39)

Determine whether the nonincreasing sequence converges or diverges. - an=1+n4n4na _ { n } = \frac { 1 + n \cdot 4 ^ { n } } { 4 ^ { n } }

(Multiple Choice)
4.9/5
(29)

A recursion formula and the initial term(s) of a sequence are given. Write out the first five terms of the sequence. - a1=1,an+1=an+6a _ { 1 } = 1 , a _ { n + 1 } = a _ { n } + 6

(Multiple Choice)
4.8/5
(33)

Find the limit of the sequence if it converges; otherwise indicate divergence. - an=(1)n8na _ { n } = ( - 1 ) ^ { n } \frac { 8 } { n }

(Multiple Choice)
4.8/5
(42)

Find the sum of the geometric series for those x for which the series converges. - n=0(x2)n\sum _ { n = 0 } ^ { \infty } ( x - 2 ) ^ { n }

(Multiple Choice)
4.8/5
(41)

Determine if the series converges or diverges. If the series converges, find its sum. - n=16n(n+3)\sum _ { n = 1 } ^ { \infty } \frac { 6 } { n ( n + 3 ) }

(Multiple Choice)
4.9/5
(41)

Determine if the series converges or diverges. If the series converges, find its sum. - n=1(1n3/21(n+1)3/2)\sum _ { n = 1 } ^ { \infty } \left( \frac { 1 } { n ^ { 3 / 2 } } - \frac { 1 } { ( n + 1 ) ^ { 3 / 2 } } \right)

(Multiple Choice)
4.9/5
(43)

Write the first four elements of the sequence. - (1+1n)n\left( 1 + \frac { 1 } { n } \right) ^ { n }

(Multiple Choice)
4.8/5
(35)

A recursion formula and the initial term(s) of a sequence are given. Write out the first five terms of the sequence. - a1=1,an+1=ann+6a _ { 1 } = 1 , a _ { n + 1 } = \frac { a _ { n } } { n + 6 }

(Multiple Choice)
4.7/5
(38)

Find the values of x for which the geometric series converges. - n=0(1)n51(8+sinx)n\sum _ { \mathrm { n } = 0 } ^ { \infty } \frac { ( - 1 ) ^ { \mathrm { n } } } { 5 } \frac { 1 } { ( 8 + \sin \mathrm { x } ) ^ { \mathrm { n } } }

(Multiple Choice)
4.8/5
(30)
Showing 101 - 120 of 155
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)