Exam 10: Infinite Sequences and Series

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Determine if the sequence is monotonic and if it is bounded. - an=4n4na _ { n } = \frac { 4 ^ { n } } { 4 n }

(Multiple Choice)
4.9/5
(40)

Find the smallest value of N that will make the inequality hold for all n > N. - 2nn1<102| \sqrt [ n ] { 2 n } - 1 | < 10 ^ { - 2 }

(Multiple Choice)
4.8/5
(30)

Provide an appropriate response. -Let f(n)=n2+4n24f ( n ) = \sqrt { n ^ { 2 } + 4 } - \sqrt { n ^ { 2 } - 4 } . What is f(n)f ( n ) approximately equal to as nn gets large? Hint: Compute various examples on your calculator.

(Multiple Choice)
4.8/5
(32)

Provide an appropriate response. -It can be shown that n!nne\sqrt [ n ] { n ! } \approx \frac { n } { e } for large values of nn . Find the smallest value of NN such that n!nne1<101\frac { \sqrt [ n ] { n ! } } { \frac { n } { e } } - 1 < 10 ^ { - 1 } for all n>N\mathrm { n } > \mathrm { N } .

(Multiple Choice)
4.9/5
(34)

Find the limit of the sequence if it converges; otherwise indicate divergence. - an=7n+62+1na _ { n } = \frac { 7 n + 6 } { 2 + 1 \sqrt { n } }

(Multiple Choice)
5.0/5
(48)

Find a formula for the nth term of the sequence. - 9,9,9,9,99 , - 9,9 , - 9,9 (9's with alternating signs)

(Multiple Choice)
4.9/5
(26)

Provide an appropriate response. -It can be shown that limn1nc=0 \lim _{n \rightarrow \infty} \frac{1}{n^{c}}=0 for c>0 c>0 Find the smallest value of N such that 1nc\mid\frac{1}{n^{c}}\mid < ε\varepsilon for all n> N if

(Multiple Choice)
4.8/5
(46)

Find the values of x for which the geometric series converges. - n=0(x6)n\sum _ { n = 0 } ^ { \infty } ( x - 6 ) ^ { n }

(Multiple Choice)
4.9/5
(38)

Find the values of x for which the geometric series converges. - n=0(1)n(x82)n\sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } \left( \frac { x - 8 } { 2 } \right) ^ { n }

(Multiple Choice)
4.8/5
(33)

Determine if the series converges or diverges. If the series converges, find its sum. - n=12n(n+1)(n+2)\sum _ { n = 1 } ^ { \infty } \frac { 2 } { n ( n + 1 ) ( n + 2 ) }

(Multiple Choice)
4.9/5
(43)

Find a formula for the nth term of the sequence. - 0,2,2,2,0,2,2,2(0,2,2,20,2,2,2,0,2,2,2 ( 0,2,2,2 repeated)

(Multiple Choice)
4.8/5
(37)

Find the sum of the series. - n=0(29n+45n)\sum _ { n = 0 } ^ { \infty } \left( \frac { 2 } { 9 ^ { n } } + \frac { 4 } { 5 ^ { n } } \right)

(Multiple Choice)
4.9/5
(30)

Determine if the series converges or diverges; if the series converges, find its sum. - n=01(6)n\sum _ { n = 0 } ^ { \infty } \frac { 1 } { ( \sqrt { 6 } ) ^ { n } }

(Multiple Choice)
4.8/5
(33)

Find the sum of the series. - n=173n\sum _ { n = 1 } ^ { \infty } \frac { 7 } { 3 ^ { n } }

(Multiple Choice)
4.8/5
(30)

Find the sum of the geometric series for those x for which the series converges. - n=0(1)n(8x)2n\sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } ( 8 x ) ^ { 2 n }

(Multiple Choice)
4.9/5
(25)
Showing 141 - 155 of 155
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)