Exam 10: Infinite Sequences and Series

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Determine if the series converges or diverges. If the series converges, find its sum. - n=1(131/(n+1)131/n)\sum _ { n = 1 } ^ { \infty } \left( \frac { 1 } { 3 ^ { 1 / ( n + 1 ) } } - \frac { 1 } { 3 ^ { 1 / n } } \right)

(Multiple Choice)
4.8/5
(32)

Find the smallest value of N that will make the inequality hold for all n > N. - an=ncos1na _ { n } = n \cos \frac { 1 } { n }

(Multiple Choice)
4.8/5
(32)

Find the sum of the series. - n=0(12n14n)\sum _ { n = 0 } ^ { \infty } \left( \frac { 1 } { 2 ^ { n } } - \frac { 1 } { 4 ^ { n } } \right)

(Multiple Choice)
4.7/5
(33)

Find a formula for the nth term of the sequence. - 0,2,0,2,00,2,0,2,0 (alternating 0 's and 2's)

(Multiple Choice)
4.8/5
(26)

A recursion formula and the initial term(s) of a sequence are given. Write out the first five terms of the sequence. - a1=1,a2=4,an+2=an+1+ana _ { 1 } = 1 , a _ { 2 } = 4 , a _ { n + 2 } = a _ { n + 1 } + a _ { n }

(Multiple Choice)
4.7/5
(37)

Determine if the series converges or diverges. If the series converges, find its sum. - n=17(4n1)(4n+3)\sum _ { n = 1 } ^ { \infty } \frac { 7 } { ( 4 n - 1 ) ( 4 n + 3 ) }

(Multiple Choice)
4.9/5
(37)

Find a formula for the nth term of the sequence. - 0,1,0,1,0,1,0,1(0,1,0,10 , - 1,0,1,0 , - 1,0,1 ( 0 , - 1,0,1 repeated)

(Multiple Choice)
4.9/5
(29)

Determine if the series converges or diverges. If the series converges, find its sum. - n=1(1n+11n+3)\sum _ { n = 1 } ^ { \infty } \left( \frac { 1 } { \sqrt { n + 1 } } - \frac { 1 } { \sqrt { n + 3 } } \right)

(Multiple Choice)
4.7/5
(38)

Find the sum of the series. - n=0(17n(1)n7n)\sum _ { n = 0 } ^ { \infty } \left( \frac { 1 } { 7 ^ { n } } - \frac { ( - 1 ) ^ { n } } { 7 ^ { n } } \right)

(Multiple Choice)
4.8/5
(41)

Provide an appropriate response. -A sequence of rational numbers {rn}\left\{ \mathrm { r } _ { \mathrm { n } } \right\} is defined byr1=21b \mathrm { y } \mathrm {} \mathrm { r } _ { 1 } = \frac { 2 } { 1 } , and if rn=ab\mathrm { r } _ { \mathrm { n } } = \frac { \mathrm { a } } { \mathrm { b } } then rn+1=a+bab\mathrm { r } _ { \mathrm { n } } + 1 = \frac { \mathrm { a } + \mathrm { b } } { \mathrm { a } - \mathrm { b } } . Find r50\mathrm { r } _ { 50 } .

(Multiple Choice)
4.9/5
(39)

Find a formula for the nth term of the sequence. - 1,14,19,116,1251 , - \frac { 1 } { 4 } , \frac { 1 } { 9 } , - \frac { 1 } { 16 } , \frac { 1 } { 25 } (reciprocals of squares with alternating signs)

(Multiple Choice)
4.8/5
(40)

Find the values of x for which the geometric series converges. - n=010nxn\sum _ { n = 0 } ^ { \infty } 10 ^ { n } x ^ { n }

(Multiple Choice)
4.9/5
(38)

Find a formula for the nth term of the sequence. - 8,9,10,11,128,9,10,11,12 (integers beginning with 8 )

(Multiple Choice)
4.9/5
(41)

Find the sum of the geometric series for those x for which the series converges. - n=0(x96)n\sum _ { n = 0 } ^ { \infty } \left( \frac { x - 9 } { 6 } \right) ^ { n }

(Multiple Choice)
4.8/5
(30)

Express the number as the ratio of two integers. - 0.222220.22222 \ldots

(Multiple Choice)
4.9/5
(36)

Find the values of x for which the geometric series converges. - n=0sin5xn \sum_{n=0}^{\infty}|\sin 5 x|^{n}

(Multiple Choice)
4.8/5
(43)

Find a formula for the nth partial sum of the series and use it to find the series' sum if the series converges. - 324+1921536++(1)n138n1+3 - 24 + 192 - 1536 + \ldots + ( - 1 ) ^ { n - 1 } 3 \cdot 8 ^ { n - 1 } + \ldots

(Multiple Choice)
4.8/5
(41)

Determine if the sequence is monotonic and if it is bounded. - an=41na _ { n } = 4 - \frac { 1 } { n }

(Multiple Choice)
4.8/5
(37)

Find a formula for the nth partial sum of the series and use it to find the series' sum if the series converges. - 9123+9234+9345++9n(n+1)(n+2)+\frac { 9 } { 1 \cdot 2 \cdot 3 } + \frac { 9 } { 2 \cdot 3 \cdot 4 } + \frac { 9 } { 3 \cdot 4 \cdot 5 } + \ldots + \frac { 9 } { n ( n + 1 ) ( n + 2 ) } + \ldots

(Multiple Choice)
5.0/5
(35)

Express the number as the ratio of two integers. - 0.31313130.3131313 \ldots

(Multiple Choice)
4.8/5
(27)
Showing 41 - 60 of 155
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)