Exam 14: Partial Derivatives

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the directional derivative of f(x,y)=2xy3f ( x , y ) = 2 \sqrt { x } - y ^ { 3 } at the point (1,3)( 1,3 ) in the direction toward the point (3,1)( 3,1 ) . Select the correct answer.

(Multiple Choice)
4.8/5
(39)

 Use the definition of partial derivatives as limits to find fx(x,y) if f(x,y)=4x28xy+2y2\text { Use the definition of partial derivatives as limits to find } f _ { x } ( x , y ) \text { if } f ( x , y ) = 4 x ^ { 2 } - 8 x y + 2 y ^ { 2 } \text {. }

(Short Answer)
4.9/5
(39)

 Find the domain and range of the function h(x,y)=2x9y\text { Find the domain and range of the function } h ( x , y ) = \sqrt { 2 x - 9 y } \text {. }

(Short Answer)
4.9/5
(31)

 Find the domain and range of the function g(x,y)=x2+2y2+3\text { Find the domain and range of the function } g ( x , y ) = x ^ { 2 } + 2 y ^ { 2 } + 3

(Short Answer)
4.8/5
(37)

Evaluate the limit. lim(x,y)(0,0)7xy2x2+y2\lim _ { ( x , y ) \rightarrow ( 0,0 ) } \frac { 7 x y ^ { 2 } } { x ^ { 2 } + y ^ { 2 } }

(Multiple Choice)
4.7/5
(27)

Find three positive numbers whose sum is 291 and whose product is a maximum.

(Multiple Choice)
4.9/5
(38)

 Find the gradient of the function f(x,y,z)=z2e2xy\text { Find the gradient of the function } f ( x , y , z ) = z ^ { 2 } e ^ { 2 x } \sqrt { y } \text {. }

(Short Answer)
4.9/5
(48)

Use polar coordinates to find the limit. lim(x,y)(0,0)x3+y3x2+y2\lim _ { ( x , y ) \rightarrow ( 0,0 ) } \frac { x ^ { 3 } + y ^ { 3 } } { x ^ { 2 } + y ^ { 2 } }

(Short Answer)
4.9/5
(38)

A contour map for a function ff is shown. Use it to estimate the value of f(2,2)f ( - 2,2 ) . Select the correct answer.  A contour map for a function  f  is shown. Use it to estimate the value of  f ( - 2,2 ) . Select the correct answer.

(Multiple Choice)
4.9/5
(31)

Use the Chain Rule to find dwdt\frac { d w } { d t } . w=3x6y3z,x=6t,y=cos2t,z=tsintw = 3 x ^ { 6 } y ^ { 3 } z , \quad x = 6 t , \quad y = \cos 2 t , \quad z = t \sin t

(Multiple Choice)
4.9/5
(42)

Use the definition of partial derivatives as limits to find fx(x,y)f _ { x } ( x , y ) if f(x,y)=5x27xy+2y2f ( x , y ) = 5 x ^ { 2 } - 7 x y + 2 y ^ { 2 } . Select the correct answer.

(Multiple Choice)
4.8/5
(35)

A boundary stripe 2 in. wide is painted around a rectangle whose dimensions are 100ft100 \mathrm { ft } by 240ft240 \mathrm { ft } . Use differentials to approximate the number of square feet of paint in the stripe.

(Multiple Choice)
4.7/5
(40)

Use implicit differentiation to find zx\frac { \partial z } { \partial x } . ln(x2+z2)+yz3+2x2=5\ln \left( x ^ { 2 } + z ^ { 2 } \right) + y z ^ { 3 } + 2 x ^ { 2 } = 5

(Short Answer)
4.8/5
(42)

Find the domain and range of the function h(x,y)=2x9yh ( x , y ) = \sqrt { 2 x - 9 y } .

(Multiple Choice)
4.8/5
(47)

Suppose that over a certain region of space the electrical potential VV is given by V(x,y,z)=8x27xy+7xyzV ( x , y , z ) = 8 x ^ { 2 } - 7 x y + 7 x y z Find the rate of change of the potential at (1,1,1)( - 1,1 , - 1 ) in the direction of the vector v=7i+10j8k\mathbf { v } = 7 \mathbf { i } + 10 \mathbf { j } - 8 \mathbf { k } . Select the correct answer.

(Multiple Choice)
4.9/5
(36)

Determine where the function f(x,y)=6xy9x+8y1f ( x , y ) = \frac { 6 x y } { 9 x + 8 y - 1 } is continuous.

(Short Answer)
4.9/5
(49)

 Find the limit lim(x,y,z)(1,2,3)xy+yz+xzxyz2\text { Find the limit } \lim _ { ( x , y , z ) \rightarrow ( 1,2,3 ) } \frac { x y + y z + x z } { x y z - 2 } \text {. }

(Short Answer)
4.8/5
(41)

Find the directional derivative of the function f(x,y)=(x+6)eyf ( x , y ) = ( x + 6 ) e ^ { y } at the point P(7,0)P ( 7,0 ) in the direction of the unit vector that makes the angle θ=π2\theta = \frac { \pi } { 2 } with the positive xx -axis.

(Multiple Choice)
4.8/5
(35)

 Find fyx for the function f(x,y)=4x3y7xy2\text { Find } f _ { y x } \text { for the function } f ( x , y ) = 4 x ^ { 3 } y - 7 x y ^ { 2 } \text {. }

(Short Answer)
4.8/5
(31)

Use the equation dydx=FxFy=FxFy\frac { d y } { d x } = - \frac { \frac { \partial F } { \partial x } } { \frac { \partial F } { \partial y } } = - \frac { F _ { x } } { F _ { y } } to find dydx\frac { d y } { d x } . cos(x8y)=xe4y\cos ( x - 8 y ) = x e ^ { 4 y }

(Multiple Choice)
4.9/5
(37)
Showing 41 - 60 of 158
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)