Exam 14: Partial Derivatives

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

A boundary stripe 2 in. wide is painted around a rectangle whose dimensions are 100ft100 \mathrm { ft } by 240ft240 \mathrm { ft } . Use differentials to approximate the number of square feet of paint in the stripe.

(Multiple Choice)
4.7/5
(37)

Find the indicated partial derivative. u=x2ybzc;6uxy2z3,a>1,b>2,c>3u = x ^ { 2 } y ^ { b } z ^ { c } ; \frac { \partial ^ { 6 } u } { \partial x \partial y ^ { 2 } \partial z ^ { 3 } } , a > 1 , b > 2 , c > 3

(Short Answer)
4.7/5
(37)

Find hzxy(x,y,z)h _ { z x y } ( x , y , z ) for the function h(x,y,z)=e9xcos(y+7z)h ( x , y , z ) = e ^ { 9 x } \cos ( y + 7 z ) . Select the correct answer.

(Multiple Choice)
4.9/5
(42)

Find the shortest distance from the point (2,0,3)( 2,0 , - 3 ) to the plane x+y+z=1x + y + z = 1 . Select the correct answer.

(Multiple Choice)
4.9/5
(36)

 Find the first partial derivatives of the function f(x,y,z)=2x3+9xy+3yzz5\text { Find the first partial derivatives of the function } f ( x , y , z ) = 2 x ^ { 3 } + 9 x y + 3 y z - z ^ { 5 } \text {. }

(Short Answer)
4.9/5
(30)

Suppose (1,1)( 1,1 ) is a critical point of a function ff with continuous second derivatives. In the case of fxx(1,1)=8,fxy(1,1)=8,fyy(1,1)=10f _ { x x } ( 1,1 ) = 8 , f _ { x y } ( 1,1 ) = 8 , f _ { y y } ( 1,1 ) = 10 what can you say about ff ? Select the correct answer.

(Multiple Choice)
4.8/5
(31)

A boundary stripe 2in2 \mathrm { in } . wide is painted around a rectangle whose dimensions are 100ft100 \mathrm { ft } by 240ft240 \mathrm { ft } . Use differentials to approximate the number of square feet of paint in the stripe.

(Short Answer)
4.8/5
(29)

Use Lagrange multipliers to find the maximum and the minimum of ff subject to the given constraint(s). f(x,y)=xyz;x2+y2+z2=3f ( x , y ) = x y z ; \quad x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 3

(Short Answer)
4.7/5
(40)

Find the limit lim(x,y)(0,0)sin(6x2+6y2)7x2+7y2\lim _ { ( x , y ) \rightarrow ( 0,0 ) } \frac { \sin \left( 6 x ^ { 2 } + 6 y ^ { 2 } \right) } { 7 x ^ { 2 } + 7 y ^ { 2 } } . Hint: If x=rcosθx = r \cos \theta and y=rsinθy = r \sin \theta , then (x,y)(0,0)( x , y ) \rightarrow ( 0,0 ) if and only if r0+r \rightarrow 0 ^ { + } . Select the correct answer.

(Multiple Choice)
4.9/5
(39)

The length ll , width ww and height hh of a box change with time. At a certain instant the dimensions are l=3l = 3 and w=h=4w = h = 4 , and ll and ww are increasing at a rate of 10 m/s10 \mathrm {~m} / \mathrm { s } while hh is decreasing at a rate of 1 m/s\mathrm { m } / \mathrm { s } . At that instant find the rates at which the surface area is changing.

(Short Answer)
4.8/5
(39)

Find equations for the tangent plane and the normal line to the surface with equation x2+9y2+9z2=22x ^ { 2 } + 9 y ^ { 2 } + 9 z ^ { 2 } = 22 at the point P(2,1,1)P ( 2,1,1 ) .

(Multiple Choice)
4.9/5
(35)

The temperature-humidity index II (or humidex, for short) is the perceived air temperature when the actual temperature is TT and the relative humidity is hh , so we can write I=f(T,h)I = f ( T , h ) . The following table of values of II is an excerpt from a table compiled by the National Oceanic and Atmospheric Administration. For what value of TT is f(T,50)=107f ( T , 50 ) = 107 ? T \downarrow \rightarrow 20 30 40 50 60 70 80 74 76 78 82 83 86 85 81 82 84 86 90 94 90 86 90 93 96 101 106 95 94 94 98 107 111 125 100 99 101 109 122 129 138

(Short Answer)
4.9/5
(35)

Find all the second partial derivatives. f(x,y)=x44x2y3f ( x , y ) = x ^ { 4 } - 4 x ^ { 2 } y ^ { 3 }

(Short Answer)
4.8/5
(39)

Find the dimensions of the rectangular box with largest volume if the total surface area is given as 384 cm2384 \mathrm {~cm} ^ { 2 } .

(Short Answer)
4.7/5
(35)

Use the Chain Rule to find up\frac { \partial u } { \partial p } . u= x=p+5r+7t,y=p-5r+7t,z=p+5r-7t

(Short Answer)
4.7/5
(32)

Find the shortest distance from the point (3,9,8)( 3,9,8 ) to the plane 3x+9y+4z=163 x + 9 y + 4 z = 16 Select the correct answer.

(Multiple Choice)
4.9/5
(32)

Find the linearization L(x,y)L ( x , y ) of the function at the given point. f(x,y)=xy,(5,25)f ( x , y ) = x \sqrt { y } , ( - 5,25 ) Round the answers to the nearest hundredth.

(Short Answer)
4.8/5
(37)

Find the directional derivative of the function f(x,y)=(x+6)eyf ( x , y ) = ( x + 6 ) e ^ { y } at the point P(7,0)P ( 7,0 ) in the direction of the unit vector that makes the angle θ=π2\theta = \frac { \pi } { 2 } with the positive xx -axis. Select the correct answer.

(Multiple Choice)
4.7/5
(42)

 Use the Chain Rule to find dwdt\text { Use the Chain Rule to find } \frac { d w } { d t } w=3x6y3z,x=6t,y=cos2t,z=tsintw = 3 x ^ { 6 } y ^ { 3 } z , \quad x = 6 t , \quad y = \cos 2 t , \quad z = t \sin t

(Short Answer)
4.9/5
(39)

 How many nth-order partial derivatives does a function of two variables have? \text { How many } n t h \text {-order partial derivatives does a function of two variables have? }

(Short Answer)
4.9/5
(38)
Showing 101 - 120 of 158
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)