Exam 14: Partial Derivatives

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Use Lagrange multipliers to find the maximum value of the function subject to the given constraint. f(x,y)=8x24y2,8x2+4y2=8f ( x , y ) = 8 x ^ { 2 } - 4 y ^ { 2 } , 8 x ^ { 2 } + 4 y ^ { 2 } = 8

(Short Answer)
4.9/5
(37)

Find the differential of the function z=3x3y6z = 3 x ^ { 3 } y ^ { 6 } . Select the correct answer.

(Multiple Choice)
4.9/5
(34)

 Find three positive real numbers whose sum is 388 and whose product is as large as possible. \text { Find three positive real numbers whose sum is } 388 \text { and whose product is as large as possible. }

(Short Answer)
4.9/5
(33)

Find the dimensions of a rectangular box of maximum volume such that the sum of the lengths of its 12 edges is 84 .

(Short Answer)
4.9/5
(28)

Use the equation dydx=xFy\frac { d y } { d x } = - \frac { \partial x } { \frac { \partial F } { \partial y } }=FxFy=FxFy= - \frac { \frac { \partial F } { \partial x } } { \frac { \partial F } { \partial y } } = - \frac { F _ { x } } { F _ { y } } to find dydx\frac { d y } { d x } . cos(x6y)=xe4y\cos ( x - 6 y ) = x e ^ { 4 y }

(Essay)
4.9/5
(43)

Find the equation of the normal line to the given surface at the specified point. 2x2+8y2+3z2=235,(6,6,7)2 x ^ { 2 } + 8 y ^ { 2 } + 3 z ^ { 2 } = 235 , ( 6,6,7 )

(Short Answer)
4.9/5
(42)

Find fy(24,8)f _ { y } ( - 24,8 ) for f(x,y)=sin(4x+12y)f ( x , y ) = \sin ( 4 x + 12 y ) Select the correct answer.

(Multiple Choice)
4.8/5
(36)

Use Lagrange multipliers to find the minimum value of the function subject to the given constraints. f(x,y,z,t)=7x+7y+7z+7t,7(x2+y2+z2+t2)=8f ( x , y , z , t ) = 7 x + 7 y + 7 z + 7 t , \quad 7 \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } + t ^ { 2 } \right) = 8

(Short Answer)
4.9/5
(40)

Use a table of numerical values of f(x,y)f ( x , y ) for (x,y)( x , y ) near the origin to make a conjecture about the value of the limit of f(x,y)f ( x , y ) as (x,y)(0,0)( x , y ) \rightarrow ( 0,0 ) . f(x,y)=x2y3+x3y271xyf ( x , y ) = \frac { x ^ { 2 } y ^ { 3 } + x ^ { 3 } y ^ { 2 } - 7 } { 1 - x y }

(Multiple Choice)
4.7/5
(37)

Find the equation of the normal line to the given surface at the specified point. z+2=xeycosz,(4,0,0)z + 2 = x e ^ { y } \cos z , ( 4,0,0 )

(Short Answer)
4.8/5
(39)

The height of a hill (in feet) is given by h(x,y)=30(145x22y2+3xy+30x18y)h ( x , y ) = 30 \left( 14 - 5 x ^ { 2 } - 2 y ^ { 2 } + 3 x y + 30 x - 18 y \right) where xx is the distance (in miles) east and yy is the distance (in miles) north of your cabin. If you are at a point on the hill 1 mile north and 1 mile east of your cabin, what is the rate of change of the height of the hill (a) in a northerly direction and (b) in an easterly direction?

(Short Answer)
4.8/5
(29)

Let g(r,s,t)=res/tg ( r , s , t ) = r e ^ { s / t } . Find g(6,ln2,12)g \left( 6 , \ln 2 , \frac { 1 } { 2 } \right) . Select the correct answer.

(Multiple Choice)
5.0/5
(28)

Find the dimensions of a rectangular box of maximum volume such that the sum of the lengths of its 12 edges is 108 . Find the dimensions of a rectangular box of maximum volume such that the sum of the lengths of its 12 edges is 108 .

(Short Answer)
4.9/5
(34)

Find equations for the tangent plane and the normal line to the surface with equation x2+9y2+9z2=22x ^ { 2 } + 9 y ^ { 2 } + 9 z ^ { 2 } = 22 at the point P(2,1,1)P ( 2,1,1 ) .

(Multiple Choice)
4.9/5
(41)

Find the limit lim(x,y)(0,0)sin(9x2+9y2)6x2+6y2\lim _ { ( x , y ) \rightarrow ( 0,0 ) } \frac { \sin \left( 9 x ^ { 2 } + 9 y ^ { 2 } \right) } { 6 x ^ { 2 } + 6 y ^ { 2 } } . Hint: If x=rcosθx = r \cos \theta and y=rsinθy = r \sin \theta , then (x,y)(0,0)( x , y ) \rightarrow ( 0,0 ) if and only if r0+r \rightarrow 0 ^ { + } .

(Short Answer)
4.9/5
(39)

If f(x,y)=x2+9y2f ( x , y ) = x ^ { 2 } + 9 y ^ { 2 } , use the gradient vector f(10,2)\nabla f ( 10,2 ) to find the tangent line to the level curve f(x,y)=136f ( x , y ) = 136 at the point (10,2)( 10,2 ) . Select the correct answer.

(Multiple Choice)
4.8/5
(31)

Suppose that over a certain region of space the electrical potential VV is given by V(x,y,z)=8x27xy+7xyzV ( x , y , z ) = 8 x ^ { 2 } - 7 x y + 7 x y z . Find the rate of change of the potential at (1,1,1)( - 1,1 , - 1 ) in the direction of the vector v=7i+10j8k\mathbf { v } = 7 \mathbf { i } + 10 \mathbf { j } - 8 \mathbf { k } . Select the correct answer.

(Multiple Choice)
4.8/5
(36)

Find an equation of the tangent plane to the given surface at the specified point. z=53x22y2,(3,2,6)z = \sqrt { 53 - x ^ { 2 } - 2 y ^ { 2 } } , ( 3,2,6 )

(Short Answer)
4.9/5
(35)

Use implicit differentiation to find z/x\partial z / \partial x . 8x2+8y24z2=2x(y+z)8 x ^ { 2 } + 8 y ^ { 2 } - 4 z ^ { 2 } = 2 x ( y + z )

(Short Answer)
4.9/5
(42)

 Find the gradient of the function f(x,y,z)=zγe2xy\text { Find the gradient of the function } f ( x , y , z ) = z ^ { \gamma } e ^ { 2 x \sqrt { y } } \text {. }

(Short Answer)
4.9/5
(41)
Showing 121 - 140 of 158
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)