Exam 17: Second-Order Differential Equations

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Solve the differential equation using the method of undetermined coefficients. ytt+6yt+9y=2+xy ^ { tt } + 6 y ^ { t } + 9 y = 2 + x Select the correct answer.

(Multiple Choice)
4.9/5
(32)

Solve the differential equation using the method of undetermined coefficients. ytt4yt=sin12xy ^ { tt } - 4 y ^ { t } = \sin 12 x

(Short Answer)
4.9/5
(39)

Solve the differential equation using the method of variation of parameters. ytt5yt+4y=4sinxy ^ { tt } - 5 y ^ {t } + 4 y = 4 \sin x

(Short Answer)
4.8/5
(46)

 Solve the differential equation using the method of variation of parameters. \text { Solve the differential equation using the method of variation of parameters. } ytt+10yt+25y=e5xx3y ^ {tt } + 10 y ^ { t} + 25 y = \frac { e ^ { - 5 x } } { x ^ { 3 } }

(Short Answer)
4.9/5
(35)

Solve the boundary-value problem, if possible. ytt+14yt+49y=0,y(0)=0,y(1)=3y ^ { t t } + 14 y ^ { t } + 49 y = 0 , y ( 0 ) = 0 , y ( 1 ) = 3

(Multiple Choice)
4.7/5
(35)

A spring with a mass of 2 kg2 \mathrm {~kg} has damping constant 8 and spring constant 80 . Graph the positior function of the mass at time tt if it starts at the equilibrium position with a velocity of 2 m/s2 \mathrm {~m} / \mathrm { s } .

(Multiple Choice)
5.0/5
(35)

Solve the initial-value problem using the method of undetermined coefficients. yttyt=xex,y(0)=0,yt(0)=3y ^ { tt } - y ^ { t } = x e ^ { x } , y ( 0 ) = 0 , y ^ { t } ( 0 ) = 3

(Short Answer)
4.9/5
(44)

Solve the differential equation using the method of undetermined coefficients. ytt5yt=sin15xy ^ { tt } - 5 y ^ { t } = \sin 15 x

(Multiple Choice)
4.8/5
(39)

Solve the differential equation. 9ytt=2yt9 y ^ {tt } = 2 y ^ { t }

(Short Answer)
4.9/5
(36)

Solve the boundary-value problem, if possible. y+10y+25y=0,y(0)=0,y(1)=9y ^ { \prime \prime } + 10 y ^ { \prime } + 25 y = 0 , y ( 0 ) = 0 , y ( 1 ) = 9

(Short Answer)
4.8/5
(44)

Solve the differential equation. Select the correct answer. ytt4yt+13y=0y ^ { tt } - 4 y ^ { t } + 13 y = 0

(Multiple Choice)
4.8/5
(31)

Solve the differential equation using the method of variation of parameters. ytt3yt=e9xy ^ { tt } - 3 y ^ {t} = e ^ { 9 x }

(Short Answer)
4.9/5
(45)

Solve the differential equation. 9ytt=2yt9 y ^ { tt } = 2 y ^ { t}

(Short Answer)
4.9/5
(31)

Solve the differential equation using the method of variation of parameters. ytt4yt+3y=2sinxy ^ { tt } - 4 y ^ { t } + 3 y = 2 \sin x

(Multiple Choice)
4.9/5
(37)

Solve the differential equation using the method of undetermined coefficients. ytt4yt=sin12xy ^ { tt } - 4 y ^ { t } = \sin 12 x

(Short Answer)
4.8/5
(34)

The solution of the initial-value problem x2ytt+xyt+x2y=0,y(0)=1,yt(0)=0x ^ { 2 } y ^ { tt } + x y ^ {t } + x ^ { 2 } y = 0 , y ( 0 ) = 1 , y ^ { t } ( 0 ) = 0 is called a Bessel function of order 0 . Solve the initial - value problem to find a power series expansion for the Bessel function.

(Short Answer)
4.8/5
(35)

Solve the differential equation using the method of variation of parameters. ytt+y=secx,π4<x<π2y ^ { tt } + y = \sec x , \quad \frac { \pi } { 4 } < x < \frac { \pi } { 2 }

(Short Answer)
4.9/5
(41)

Suppose a spring has mass MM and spring constant kk and let ω=k/M\omega = \sqrt { k / M } . Suppose that the damping constant is so small that the damping force is negligible. If an external force F(t)=8F0cos(ωt)F ( t ) = 8 F _ { 0 } \cos ( \omega t ) is applied (the applied frequency equals the natural frequency), use the method of undetermined coefficients to find the equation that describes the motion of the mass.

(Short Answer)
4.8/5
(39)

Solve the initial-value problem. ytt+8yt+41y=0,y(0)=1,yt(0)=2y ^ { tt } + 8 y ^ { t } + 41 y = 0 , y ( 0 ) = 1 , y ^ { t} ( 0 ) = 2

(Multiple Choice)
4.9/5
(34)

Solve the differential equation. ytt8yt+25y=0y ^ { tt } - 8 y ^ { t } + 25 y = 0

(Short Answer)
4.7/5
(41)
Showing 121 - 140 of 159
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)